Academic Textbook: The Role of Melatonin in Pathogenesis and Treatment of Autoimmune Diseases
Keywords:
Melatonin , Pathogenesis , Autoimmune DiseasesAbstract
An association of melatonin levels with age disease initiation of autoimmune diseases and pineal calcification was reported while an inverse association between melatonin levels and disease duration was shown, respectively. Recent investigations showed that melatonin’s serum and plasma levels as well as the 6-sulphatoxymelatonin (aMT6-s) the major melatonin metabolite urine levels were significantly lower in patients with autoimmune diseases compared with healthy controls. The accumulating evidence that disrupted melatonin production may contribute to the pathogenesis of autoimmune diseases led the researchers to assess gene variations which are essential for melatonin biosynthesis and analyze whether these variants constitute a risk for development of autoimmune diseases. In this regard , investigations conducted on cases with autoimmune diseases showed that the single gene polymorphism (SNPs) of tryptophan hydroxylase 2 (TPH2) gene was correlated with high risk of severe disability in patients. Therefore, in this book we aimed to review role of melatonin in pathogenesis and treatment of autoimmune diseases.
References
Takarada-Iemata M, Hori O. [Astrocytes in the pathogenesis of multiple sclerosis]. Nihon Yakurigaku Zasshi. 2021;156(4):230-4.
Toghi M, Bitarafan S, Kasmaei HD, Ghafouri-Fard S. Bifidobacteria: A probable missing puzzle piece in the pathogenesis of multiple sclerosis. Multiple sclerosis and related disorders. 2019;36:101378.
Pashaei S, Mohammadi P, Yarani R, Haghgoo SM, Emami Aleagha MS. Carbohydrate and lipid metabolism in multiple sclerosis: Clinical implications for etiology, pathogenesis, diagnosis, prognosis, and therapy. Arch Biochem Biophys. 2021;712:109030.
Veroni C, Aloisi F. The CD8 T Cell-Epstein-Barr Virus-B Cell Trialogue: A Central Issue in Multiple Sclerosis Pathogenesis. Front Immunol. 2021;12:665718.
Simkins TJ, Duncan GJ, Bourdette D. Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep. 2021;21(6):26.
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis. 2021;36(3):375-406.
Marcucci SB, Obeidat AZ. EBNA1, EBNA2, and EBNA3 link Epstein-Barr virus and hypovitaminosis D in multiple sclerosis pathogenesis. J Neuroimmunol. 2020;339:577116.
Bergaglio T, Luchicchi A, Schenk GJ. Engine Failure in Axo-Myelinic Signaling: A Potential Key Player in the Pathogenesis of Multiple Sclerosis. Front Cell Neurosci. 2021;15:610295.
Hassani A, Khan G. Epstein-Barr Virus and miRNAs: Partners in Crime in the Pathogenesis of Multiple Sclerosis? Front Immunol. 2019;10:695.
D'Anca M, Fenoglio C, Buccellato FR, Visconte C, Galimberti D, Scarpini E. Extracellular Vesicles in Multiple Sclerosis: Role in the Pathogenesis and Potential Usefulness as Biomarkers and Therapeutic Tools. Cells. 2021;10(7).
Cui Y, Yu H, Bu Z, Wen L, Yan L, Feng J. Focus on the Role of the NLRP3 Inflammasome in Multiple Sclerosis: Pathogenesis, Diagnosis, and Therapeutics. Front Mol Neurosci. 2022;15:894298.
Brown J, Quattrochi B, Everett C, Hong BY, Cervantes J. Gut commensals, dysbiosis, and immune response imbalance in the pathogenesis of multiple sclerosis. Mult Scler. 2021;27(6):807-11.
Tavassolifar MJ, Vodjgani M, Salehi Z, Izad M. The Influence of Reactive Oxygen Species in the Immune System and Pathogenesis of Multiple Sclerosis. Autoimmune Dis. 2020;2020:5793817.
Biernacki T, Sandi D, Bencsik K, Vécsei L. Kynurenines in the Pathogenesis of Multiple Sclerosis: Therapeutic Perspectives. Cells. 2020;9(6).
DiSano KD, Gilli F, Pachner AR. Memory B Cells in Multiple Sclerosis: Emerging Players in Disease Pathogenesis. Front Immunol. 2021;12:676686.
Duarte-Silva E, Meuth SG, Peixoto CA. Microbial Metabolites in Multiple Sclerosis: Implications for Pathogenesis and Treatment. Front Neurosci. 2022;16:885031.
Airas L, Yong VW. Microglia in multiple sclerosis - pathogenesis and imaging. Curr Opin Neurol. 2022;35(3):299-306.
Maciak K, Dziedzic A, Miller E, Saluk-Bijak J. miR-155 as an Important Regulator of Multiple Sclerosis Pathogenesis. A Review. International journal of molecular sciences. 2021;22(9).
Basak J, Majsterek I. miRNA-Dependent CD4(+) T Cell Differentiation in the Pathogenesis of Multiple Sclerosis. Mult Scler Int. 2021;2021:8825588.
Nourbakhsh B, Mowry EM. Multiple Sclerosis Risk Factors and Pathogenesis. Continuum (Minneap Minn). 2019;25(3):596-610.
De Bondt M, Hellings N, Opdenakker G, Struyf S. Neutrophils: Underestimated Players in the Pathogenesis of Multiple Sclerosis (MS). International journal of molecular sciences. 2020;21(12).
Scalabrino G. New Epidermal-Growth-Factor-Related Insights Into the Pathogenesis of Multiple Sclerosis: Is It Also Epistemology? Front Neurol. 2021;12:754270.
Yousuf A, Qurashi A. Non-coding RNAs in the Pathogenesis of Multiple Sclerosis. Front Genet. 2021;12:717922.
Lopez JA, Denkova M, Ramanathan S, Dale RC, Brilot F. Pathogenesis of autoimmune demyelination: from multiple sclerosis to neuromyelitis optica spectrum disorders and myelin oligodendrocyte glycoprotein antibody-associated disease. Clin Transl Immunology. 2021;10(7):e1316.
Libner CD, Salapa HE, Levin MC. The Potential Contribution of Dysfunctional RNA-Binding Proteins to the Pathogenesis of Neurodegeneration in Multiple Sclerosis and Relevant Models. International journal of molecular sciences. 2020;21(13).
Satheesh NJ, Salloum-Asfar S, Abdulla SA. The Potential Role of COVID-19 in the Pathogenesis of Multiple Sclerosis-A Preliminary Report. Viruses. 2021;13(10).
Singh V, Tripathi A, Dutta R. Proteomic Approaches to Decipher Mechanisms Underlying Pathogenesis in Multiple Sclerosis Patients. Proteomics. 2019;19(16):e1800335.
Musella A, Fresegna D, Rizzo FR, Gentile A, De Vito F, Caioli S, et al. 'Prototypical' proinflammatory cytokine (IL-1) in multiple sclerosis: role in pathogenesis and therapeutic targeting. Expert Opin Ther Targets. 2020;24(1):37-46.
Lezhnyova VR, Martynova EV, Khaiboullin TI, Urbanowicz RA, Khaiboullina SF, Rizvanov AA. The Relationship of the Mechanisms of the Pathogenesis of Multiple Sclerosis and the Expression of Endogenous Retroviruses. Biology (Basel). 2020;9(12).
Yu X, Graner M, Kennedy PGE, Liu Y. The Role of Antibodies in the Pathogenesis of Multiple Sclerosis. Front Neurol. 2020;11:533388.
Kuzmina US, Zainullina LF, Vakhitov VA, Bakhtiyarova KZ, Vakhitova YV. [The role of glutamate in the pathogenesis of multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova. 2019;119(8):160-7.
Lotfi R, Nasiri Kalmarzi R, Rajabinejad M, Hasani S, Zamani F. The role of immune semaphorins in the pathogenesis of multiple sclerosis: Potential therapeutic targets. Int Immunopharmacol. 2021;95:107556.
Ahmadi A, Fallah Vastani Z, Abounoori M, Azizi M, Labani-Motlagh A, Mami S, et al. The role of NK and NKT cells in the pathogenesis and improvement of multiple sclerosis following disease-modifying therapies. Health Sci Rep. 2022;5(1):e489.
Fanara S, Aprile M, Iacono S, Schirò G, Bianchi A, Brighina F, et al. The Role of Nutritional Lifestyle and Physical Activity in Multiple Sclerosis Pathogenesis and Management: A Narrative Review. Nutrients. 2021;13(11).
Nishanth K, Tariq E, Nzvere FP, Miqdad M, Cancarevic I. Role of Smoking in the Pathogenesis of Multiple Sclerosis: A Review Article. Cureus. 2020;12(8):e9564.
Pilipović I, Stojić-Vukanić Z, Prijić I, Leposavić G. Role of the End-Point Mediators of Sympathoadrenal and Sympathoneural Stress Axes in the Pathogenesis of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis. Front Endocrinol (Lausanne). 2019;10:921.
Tarlinton RE, Martynova E, Rizvanov AA, Khaiboullina S, Verma S. Role of Viruses in the Pathogenesis of Multiple Sclerosis. Viruses. 2020;12(6).
Pardini M, Brown JWL, Magliozzi R, Reynolds R, Chard DT. Surface-in pathology in multiple sclerosis: a new view on pathogenesis? Brain. 2021;144(6):1646-54.
Farez MF, Calandri IL, Correale J, Quintana FJ. Anti-inflammatory effects of melatonin in multiple sclerosis. Bioessays. 2016;38(10):1016-26.
Ghareghani M, Reiter RJ, Zibara K, Farhadi N. Latitude, Vitamin D, Melatonin, and Gut Microbiota Act in Concert to Initiate Multiple Sclerosis: A New Mechanistic Pathway. Front Immunol. 2018;9:2484.
Muñoz-Jurado A, Escribano BM, Caballero-Villarraso J, Galván A, Agüera E, Santamaría A, et al. Melatonin and multiple sclerosis: antioxidant, anti-inflammatory and immunomodulator mechanism of action. Inflammopharmacology. 2022:1-28.
Yeganeh Salehpour M, Mollica A, Momtaz S, Sanadgol N, Farzaei MH. Melatonin and Multiple Sclerosis: From Plausible Neuropharmacological Mechanisms of Action to Experimental and Clinical Evidence. Clin Drug Investig. 2019;39(7):607-24.
Kuklina EM. [Melatonin as an inducing factor for multiple sclerosis]. Zh Nevrol Psikhiatr Im S S Korsakova. 2016;116(5):102-5.
Rodriguez M, Wootla B, Anderson G. Multiple Sclerosis, Gut Microbiota and Permeability: Role of Tryptophan Catabolites, Depression and the Driving Down of Local Melatonin. Curr Pharm Des. 2016;22(40):6134-41.
Anderson G, Rodriguez M, Reiter RJ. Multiple Sclerosis: Melatonin, Orexin, and Ceramide Interact with Platelet Activation Coagulation Factors and Gut-Microbiome-Derived Butyrate in the Circadian Dysregulation of Mitochondria in Glia and Immune Cells. International journal of molecular sciences. 2019;20(21).
Anderson G, Rodriguez M. Multiple sclerosis: the role of melatonin and N-acetylserotonin. Multiple sclerosis and related disorders. 2015;4(2):112-23.
Skarlis C, Anagnostouli M. The role of melatonin in Multiple Sclerosis. Neurol Sci. 2020;41(4):769-81.
Escribano BM, Colín-González AL, Santamaría A, Túnez I. The role of melatonin in multiple sclerosis, Huntington's disease and cerebral ischemia. CNS Neurol Disord Drug Targets. 2014;13(6):1096-119.
Anderson G, Rodriguez M. Multiple sclerosis, seizures, and antiepileptics: role of IL-18, IDO, and melatonin. Eur J Neurol. 2011;18(5):680-5.
Sandyk R, Awerbuch GI. Nocturnal melatonin secretion in multiple sclerosis patients with affective disorders. Int J Neurosci. 1993;68(3-4):227-40.
Sandyk R, Awerbuch GI. Nocturnal plasma melatonin and alpha-melanocyte stimulating hormone levels during exacerbation of multiple sclerosis. Int J Neurosci. 1992;67(1-4):173-86.
Chaiyarit P, Luengtrakoon K, Wannakasemsuk W, Vichitrananda V, Klanrit P, Hormdee D, et al. Biological functions of melatonin in relation to pathogenesis of oral lichen planus. Med Hypotheses. 2017;104:40-4.
Luengtrakoon K, Wannakasemsuk W, Vichitrananda V, Klanrit P, Hormdee D, Noisombut R, et al. Increased melatonin in oral mucosal tissue of oral lichen planus (OLP) patients: A possible link between melatonin and its role in oral mucosal inflammation. Arch Oral Biol. 2017;78:13-9.
Kurago ZB. Etiology and pathogenesis of oral lichen planus: an overview. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(1):72-80.
Ma H, Wu Y, Yang H, Liu J, Dan H, Zeng X, et al. MicroRNAs in oral lichen planus and potential miRNA-mRNA pathogenesis with essential cytokines: a review. Oral Surg Oral Med Oral Pathol Oral Radiol. 2016;122(2):164-73.
Gupta S, Jawanda MK. Oral Lichen Planus: An Update on Etiology, Pathogenesis, Clinical Presentation, Diagnosis and Management. Indian J Dermatol. 2015;60(3):222-9.
Nogueira PA, Carneiro S, Ramos-e-Silva M. Oral lichen planus: an update on its pathogenesis. Int J Dermatol. 2015;54(9):1005-10.
Sugerman PB, Savage NW, Walsh LJ, Zhao ZZ, Zhou XJ, Khan A, et al. The pathogenesis of oral lichen planus. Crit Rev Oral Biol Med. 2002;13(4):350-65.
Roopashree MR, Gondhalekar RV, Shashikanth MC, George J, Thippeswamy SH, Shukla A. Pathogenesis of oral lichen planus--a review. J Oral Pathol Med. 2010;39(10):729-34.
Li C, He H, Wang J, Xia X, Zhang M, Wu Q. Possible roles of exosomal miRNAs in the pathogenesis of oral lichen planus. Am J Transl Res. 2019;11(9):5313-23.
Husein-ElAhmed H, Steinhoff M. Potential role of INTERLEUKIN-17 in the pathogenesis of oral lichen planus: a systematic review with META-analysis. J Eur Acad Dermatol Venereol. 2022.
Wang H, Zhang D, Han Q, Zhao X, Zeng X, Xu Y, et al. Role of distinct CD4(+) T helper subset in pathogenesis of oral lichen planus. J Oral Pathol Med. 2016;45(6):385-93.
Tarasenko SV, Shatokhin AI, Umbetova KT, Stepanov MA. [T-cells immunity in oral lichen planus pathogenesis]. Stomatologiia (Mosk). 2014;93(1):60-3.
Zhou X, Chen Y, Cui L, Shi Y, Guo C. Advances in the pathogenesis of psoriasis: from keratinocyte perspective. Cell Death Dis. 2022;13(1):81.
Ma JY, Shao S, Wang G. Antimicrobial peptides: bridging innate and adaptive immunity in the pathogenesis of psoriasis. Chin Med J (Engl). 2020;133(24):2966-75.
Aghamajidi A, Raoufi E, Parsamanesh G, Jalili A, Salehi-Shadkami M, Mehrali M, et al. The attentive focus on T cell-mediated autoimmune pathogenesis of psoriasis, lichen planus and vitiligo. Scand J Immunol. 2021;93(4):e13000.
Martins AM, Ascenso A, Ribeiro HM, Marto J. The Brain-Skin Connection and the Pathogenesis of Psoriasis: A Review with a Focus on the Serotonergic System. Cells. 2020;9(4).
Cai J, Cui L, Wang Y, Li Y, Zhang X, Shi Y. Cardiometabolic Comorbidities in Patients With Psoriasis: Focusing on Risk, Biological Therapy, and Pathogenesis. Front Pharmacol. 2021;12:774808.
Masalha M, Sidi Y, Avni D. The contribution of feedback loops between miRNAs, cytokines and growth factors to the pathogenesis of psoriasis. Exp Dermatol. 2018;27(6):603-10.
Lorthois I, Asselineau D, Seyler N, Pouliot R. Contribution of In Vivo and Organotypic 3D Models to Understanding the Role of Macrophages and Neutrophils in the Pathogenesis of Psoriasis. Mediators Inflamm. 2017;2017:7215072.
Guo Z, Yang Y, Liao Y, Shi Y, Zhang LJ. Emerging Roles of Adipose Tissue in the Pathogenesis of Psoriasis and Atopic Dermatitis in Obesity. JID Innov. 2022;2(1):100064.
Ghafouri-Fard S, Eghtedarian R, Taheri M, Rakhshan A. The eminent roles of ncRNAs in the pathogenesis of psoriasis. Noncoding RNA Res. 2020;5(3):99-108.
Buerger C. Epidermal mTORC1 Signaling Contributes to the Pathogenesis of Psoriasis and Could Serve as a Therapeutic Target. Front Immunol. 2018;9:2786.
van de Kerkhof PC. From Empirical to Pathogenesis-Based Treatments for Psoriasis. J Invest Dermatol. 2022.
Singh S, Pradhan D, Puri P, Ramesh V, Aggarwal S, Nayek A, et al. Genomic alterations driving psoriasis pathogenesis. Gene. 2019;683:61-71.
De Francesco MA, Caruso A. The Gut Microbiome in Psoriasis and Crohn's Disease: Is Its Perturbation a Common Denominator for Their Pathogenesis? Vaccines (Basel). 2022;10(2).
Ceccarelli M, Venanzi Rullo E, Vaccaro M, Facciolà A, d'Aleo F, Paolucci IA, et al. HIV-associated psoriasis: Epidemiology, pathogenesis, and management. Dermatol Ther. 2019;32(2):e12806.
Prinz JC. Human Leukocyte Antigen-Class I Alleles and the Autoreactive T Cell Response in Psoriasis Pathogenesis. Front Immunol. 2018;9:954.
Blauvelt A, Chiricozzi A. The Immunologic Role of IL-17 in Psoriasis and Psoriatic Arthritis Pathogenesis. Clin Rev Allergy Immunol. 2018;55(3):379-90.
Winiarska-Mieczan A, Mieczan T, Wójcik G. Importance of Redox Equilibrium in the Pathogenesis of Psoriasis-Impact of Antioxidant-Rich Diet. Nutrients. 2020;12(6).
Isac L, Jiquan S. Interleukin 10 promotor gene polymorphism in the pathogenesis of psoriasis. Acta Dermatovenerol Alp Pannonica Adriat. 2019;28(3):119-23.
Albanesi C, Madonna S, Gisondi P, Girolomoni G. The Interplay Between Keratinocytes and Immune Cells in the Pathogenesis of Psoriasis. Front Immunol. 2018;9:1549.
Liang X, Ou C, Zhuang J, Li J, Zhang F, Zhong Y, et al. Interplay Between Skin Microbiota Dysbiosis and the Host Immune System in Psoriasis: Potential Pathogenesis. Front Immunol. 2021;12:764384.
Jaworecka K, Muda-Urban J, Rzepko M, Reich A. Molecular Aspects of Pruritus Pathogenesis in Psoriasis. International journal of molecular sciences. 2021;22(2).
Honma M, Nozaki H. Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med. 2021;10(15).
Haneke E. Nail psoriasis: clinical features, pathogenesis, differential diagnoses, and management. Psoriasis (Auckl). 2017;7:51-63.
Tokuyama M, Mabuchi T. New Treatment Addressing the Pathogenesis of Psoriasis. International journal of molecular sciences. 2020;21(20).
Pleńkowska J, Gabig-Cimińska M, Mozolewski P. Oxidative Stress as an Important Contributor to the Pathogenesis of Psoriasis. International journal of molecular sciences. 2020;21(17).
Gisondi P, Bellinato F, Girolomoni G, Albanesi C. Pathogenesis of Chronic Plaque Psoriasis and Its Intersection With Cardio-Metabolic Comorbidities. Front Pharmacol. 2020;11:117.
Samotij D, Nedoszytko B, Bartosińska J, Batycka-Baran A, Czajkowski R, Dobrucki IT, et al. Pathogenesis of psoriasis in the "omic" era. Part I. Epidemiology, clinical manifestation, immunological and neuroendocrine disturbances. Postepy Dermatol Alergol. 2020;37(2):135-53.
Nedoszytko B, Szczerkowska-Dobosz A, Stawczyk-Macieja M, Owczarczyk-Saczonek A, Reich A, Bartosiñska J, et al. Pathogenesis of psoriasis in the "omic" era. Part II. Genetic, genomic and epigenetic changes in psoriasis. Postepy Dermatol Alergol. 2020;37(3):283-98.
Owczarczyk-Saczonek A, Purzycka-Bohdan D, Nedoszytko B, Reich A, Szczerkowska-Dobosz A, Bartosiñska J, et al. Pathogenesis of psoriasis in the "omic" era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol Alergol. 2020;37(4):452-67.
Szczerkowska-Dobosz A, Krasowska D, Bartosińska J, Stawczyk-Macieja M, Walczak A, Owczarczyk-Saczonek A, et al. Pathogenesis of psoriasis in the "omic" era. Part IV. Epidemiology, genetics, immunopathogenesis, clinical manifestation and treatment of psoriatic arthritis. Postepy Dermatol Alergol. 2020;37(5):625-34.
Kim HO, Kang SY, Kim JC, Park CW, Chung BY. Pediatric Psoriasis: From New Insights into Pathogenesis to Updates on Treatment. Biomedicines. 2021;9(8).
Fan Z, Wang L, Jiang H, Lin Y, Wang Z. Platelet Dysfunction and Its Role in the Pathogenesis of Psoriasis. Dermatology. 2021;237(1):56-65.
Cannavò SP, Bertino L, Di Salvo E, Papaianni V, Ventura-Spagnolo E, Gangemi S. Possible Roles of IL-33 in the Innate-Adaptive Immune Crosstalk of Psoriasis Pathogenesis. Mediators Inflamm. 2019;2019:7158014.
Packer M. Potential Role of Atrial Myopathy in the Pathogenesis of Stroke in Rheumatoid Arthritis and Psoriasis: A Conceptual Framework and Implications for Prophylaxis. J Am Heart Assoc. 2020;9(3):e014764.
Chimenti MS, Sunzini F, Fiorucci L, Botti E, Fonti GL, Conigliaro P, et al. Potential Role of Cytochrome c and Tryptase in Psoriasis and Psoriatic Arthritis Pathogenesis: Focus on Resistance to Apoptosis and Oxidative Stress. Front Immunol. 2018;9:2363.
Rendon A, Schäkel K. Psoriasis Pathogenesis and Treatment. International journal of molecular sciences. 2019;20(6).
Petit RG, Cano A, Ortiz A, Espina M, Prat J, Muñoz M, et al. Psoriasis: From Pathogenesis to Pharmacological and Nano-Technological-Based Therapeutics. International journal of molecular sciences. 2021;22(9).
Conrad C, Gilliet M. Psoriasis: from Pathogenesis to Targeted Therapies. Clin Rev Allergy Immunol. 2018;54(1):102-13.
Ferrari D, Casciano F, Secchiero P, Reali E. Purinergic Signaling and Inflammasome Activation in Psoriasis Pathogenesis. International journal of molecular sciences. 2021;22(17).
Volarić I, Vičić M, Prpić-Massari L. The Role of CD8+ T-Cells and their Cytokines in the Pathogenesis of Psoriasis. Acta Dermatovenerol Croat. 2019;27(3):159-62.
Chekol Abebe E, Tilahun Muche Z, Behaile TMA, Mengie Ayele T, Mekonnen Agidew M, Teshome Azezew M, et al. Role of Fetuin-A in the Pathogenesis of Psoriasis and Its Potential Clinical Applications. Clin Cosmet Investig Dermatol. 2022;15:595-607.
Alesa DI, Alshamrani HM, Alzahrani YA, Alamssi DN, Alzahrani NS, Almohammadi ME. The role of gut microbiome in the pathogenesis of psoriasis and the therapeutic effects of probiotics. J Family Med Prim Care. 2019;8(11):3496-503.
Yan B, Liu N, Li J, Li J, Zhu W, Kuang Y, et al. The role of Langerhans cells in epidermal homeostasis and pathogenesis of psoriasis. J Cell Mol Med. 2020;24(20):11646-55.
Campanati A, Consales V, Orciani M, Giuliodori K, Ganzetti G, Bobyr I, et al. Role of mesenchymal stem cells in the pathogenesis of psoriasis: current perspectives. Psoriasis (Auckl). 2017;7:73-85.
Zhang X, He Y. The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front Immunol. 2020;11:1984.
Nussbaum L, Chen YL, Ogg GS. Role of regulatory T cells in psoriasis pathogenesis and treatment. Br J Dermatol. 2021;184(1):14-24.
Czerwińska J, Owczarczyk-Saczonek A. The Role of the Neutrophilic Network in the Pathogenesis of Psoriasis. International journal of molecular sciences. 2022;23(3).
Vu TT, Koguchi-Yoshioka H, Watanabe R. Skin-Resident Memory T Cells: Pathogenesis and Implication for the Treatment of Psoriasis. J Clin Med. 2021;10(17).
Casciano F, Pigatto PD, Secchiero P, Gambari R, Reali E. T Cell Hierarchy in the Pathogenesis of Psoriasis and Associated Cardiovascular Comorbidities. Front Immunol. 2018;9:1390.
Rioux G, Ridha Z, Simard M, Turgeon F, Guérin SL, Pouliot R. Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes (Basel). 2020;11(10).
Zhang LJ. Type1 Interferons Potential Initiating Factors Linking Skin Wounds With Psoriasis Pathogenesis. Front Immunol. 2019;10:1440.
Yang L, Guo W, Zhang S, Wang G. Ubiquitination-proteasome system: A new player in the pathogenesis of psoriasis and clinical implications. J Dermatol Sci. 2018;89(3):219-25.
Bocheńska K, Gabig-Cimińska M. Unbalanced Sphingolipid Metabolism and Its Implications for the Pathogenesis of Psoriasis. Molecules. 2020;25(5).
Sandyk R, Pardeshi R. Mood-dependent fluctuations in the severity of tardive dyskinesia and psoriasis vulgaris in a patient with schizoaffective disorder: possible role of melatonin. Int J Neurosci. 1990;50(3-4):215-21.
Mozzanica N, Tadini G, Radaelli A, Negri M, Pigatto P, Morelli M, et al. Plasma melatonin levels in psoriasis. Acta Derm Venereol. 1988;68(4):312-6.
Kartha LB, Chandrashekar L, Rajappa M, Menon V, Thappa DM, Ananthanarayanan PH. Serum melatonin levels in psoriasis and associated depressive symptoms. Clin Chem Lab Med. 2014;52(6):e123-5.
Cutolo M, Maestroni GJ, Otsa K, Aakre O, Villaggio B, Capellino S, et al. Circadian melatonin and cortisol levels in rheumatoid arthritis patients in winter time: a north and south Europe comparison. Ann Rheum Dis. 2005;64(2):212-6.
Arushanian É B, Naumov SS, Ivanova VN, Lomonosova KV. [Comparative study of the influence of melatonin and diclofenac on some hematologic indices of experimental rheumatoid arthritis in rats]. Eksp Klin Farmakol. 2014;77(3):13-5.
Maestroni GJ, Cardinali DP, Esquifino AI, Pandi-Perumal SR. Does melatonin play a disease-promoting role in rheumatoid arthritis? J Neuroimmunol. 2005;158(1-2):106-11.
Synorova AA, Popova TN, Safonova OA, Makeeva AV. [EFFECT OF MELATONIN ON THE GLUTATHIONE ANTIOXIDANT SYSTEM ACTIVITY IN RAT TISSUES UNDER CONDITIONS OF EXPERIMENTAL RHEUMATOID ARTHRITIS.]. Eksp Klin Farmakol. 2016;79(7):12-5.
Esalatmanesh K, Loghman A, Esalatmanesh R, Soleimani Z, Khabbazi A, Mahdavi AM, et al. Effects of melatonin supplementation on disease activity, oxidative stress, inflammatory, and metabolic parameters in patients with rheumatoid arthritis: a randomized double-blind placebo-controlled trial. Clin Rheumatol. 2021;40(9):3591-7.
Forrest CM, Mackay GM, Stoy N, Stone TW, Darlington LG. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br J Clin Pharmacol. 2007;64(4):517-26.
Korkmaz A. Melatonin as an adjuvant therapy in patients with rheumatoid arthritis. Br J Clin Pharmacol. 2008;66(2):316-7.
Huang CC, Chiou CH, Liu SC, Hu SL, Su CM, Tsai CH, et al. Melatonin attenuates TNF-α and IL-1β expression in synovial fibroblasts and diminishes cartilage degradation: Implications for the treatment of rheumatoid arthritis. J Pineal Res. 2019;66(3):e12560.
Jahanban-Esfahlan R, Mehrzadi S, Reiter RJ, Seidi K, Majidinia M, Baghi HB, et al. Melatonin in regulation of inflammatory pathways in rheumatoid arthritis and osteoarthritis: involvement of circadian clock genes. Br J Pharmacol. 2018;175(16):3230-8.
Maestroni GJ, Sulli A, Pizzorni C, Villaggio B, Cutolo M. Melatonin in rheumatoid arthritis: a disease-promoting and modulating hormone? Clin Exp Rheumatol. 2002;20(6):872-3.
Maestroni GJ, Sulli A, Pizzorni C, Villaggio B, Cutolo M. Melatonin in rheumatoid arthritis: synovial macrophages show melatonin receptors. Ann N Y Acad Sci. 2002;966:271-5.
West SK, Oosthuizen JM. Melatonin levels are decreased in rheumatoid arthritis. J Basic Clin Physiol Pharmacol. 1992;3(1):33-40.
Sulli A, Maestroni GJ, Villaggio B, Hertens E, Craviotto C, Pizzorni C, et al. Melatonin serum levels in rheumatoid arthritis. Ann N Y Acad Sci. 2002;966:276-83.
Maestroni GJ, Otsa K, Cutolo M. Melatonin treatment does not improve rheumatoid arthritis. Br J Clin Pharmacol. 2008;65(5):797-8.
Cutolo M, Maestroni GJ. The melatonin-cytokine connection in rheumatoid arthritis. Ann Rheum Dis. 2005;64(8):1109-11.
Afkhamizadeh M, Sahebari M, Seyyed-Hoseini SR. Morning melatonin serum values do not correlate with disease activity in rheumatoid arthritis: a cross-sectional study. Rheumatol Int. 2014;34(8):1145-51.
Ha E, Choe BK, Jung KH, Yoon SH, Park HJ, Park HK, et al. Positive relationship between melatonin receptor type 1B polymorphism and rheumatoid factor in rheumatoid arthritis patients in the Korean population. J Pineal Res. 2005;39(2):201-5.
MacDonald IJ, Huang CC, Liu SC, Tang CH. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. International journal of molecular sciences. 2020;21(8).
El-Awady HM, El-Wakkad AS, Saleh MT, Muhammad SI, Ghaniema EM. Serum melatonin in juvenile rheumatoid arthritis: correlation with disease activity. Pak J Biol Sci. 2007;10(9):1471-6.
Kessler J, Totoson P, Devaux S, Moretto J, Wendling D, Demougeot C. Animal models to study pathogenesis and treatments of cardiac disorders in rheumatoid arthritis: Advances and challenges for clinical translation. Pharmacol Res. 2021;170:105494.
Berthelot JM, Bandiaky ON, Le Goff B, Amador G, Chaux AG, Soueidan A, et al. Another Look at the Contribution of Oral Microbiota to the Pathogenesis of Rheumatoid Arthritis: A Narrative Review. Microorganisms. 2021;10(1).
Alivernini S, Tolusso B, Fedele AL, Di Mario C, Ferraccioli G, Gremese E. The B side of rheumatoid arthritis pathogenesis. Pharmacol Res. 2019;149:104465.
Coras R, Murillo-Saich JD, Guma M. Circulating Pro- and Anti-Inflammatory Metabolites and Its Potential Role in Rheumatoid Arthritis Pathogenesis. Cells. 2020;9(4).
Khan T, Jose RJ, Renzoni EA, Mouyis M. A Closer Look at the Role of Anti-CCP Antibodies in the Pathogenesis of Rheumatoid Arthritis-Associated Interstitial Lung Disease and Bronchiectasis. Rheumatol Ther. 2021;8(4):1463-75.
Koga T, Kawakami A, Tsokos GC. Current insights and future prospects for the pathogenesis and treatment for rheumatoid arthritis. Clin Immunol. 2021;225:108680.
He J, Ju J, Wang X. The current status of anti-citrullinated protein antibodies and citrullinated protein-reactive B cells in the pathogenesis of rheumatoid arthritis. Mol Biol Rep. 2022;49(3):2475-85.
Kondo N, Kuroda T, Kobayashi D. Cytokine Networks in the Pathogenesis of Rheumatoid Arthritis. International journal of molecular sciences. 2021;22(20).
Miao C, Bai L, Yang Y, Huang J. Dysregulation of lncRNAs in Rheumatoid Arthritis: Biomarkers, Pathogenesis and Potential Therapeutic Targets. Front Pharmacol. 2021;12:652751.
Nemtsova MV, Zaletaev DV, Bure IV, Mikhaylenko DS, Kuznetsova EB, Alekseeva EA, et al. Epigenetic Changes in the Pathogenesis of Rheumatoid Arthritis. Front Genet. 2019;10:570.
Yang C, Li D, Teng D, Zhou Y, Zhang L, Zhong Z, et al. Epigenetic Regulation in the Pathogenesis of Rheumatoid Arthritis. Front Immunol. 2022;13:859400.
Ibáñez-Cabellos JS, Seco-Cervera M, Osca-Verdegal R, Pallardó FV, García-Giménez JL. Epigenetic Regulation in the Pathogenesis of Sjögren Syndrome and Rheumatoid Arthritis. Front Genet. 2019;10:1104.
Guo S, Xu L, Chang C, Zhang R, Jin Y, He D. Epigenetic Regulation Mediated by Methylation in the Pathogenesis and Precision Medicine of Rheumatoid Arthritis. Front Genet. 2020;11:811.
Karami J, Aslani S, Tahmasebi MN, Mousavi MJ, Sharafat Vaziri A, Jamshidi A, et al. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunol Cell Biol. 2020;98(3):171-86.
Kronzer VL, Davis JM, 3rd. Etiologies of Rheumatoid Arthritis: Update on Mucosal, Genetic, and Cellular Pathogenesis. Curr Rheumatol Rep. 2021;23(4):21.
Coutant F, Miossec P. Evolving concepts of the pathogenesis of rheumatoid arthritis with focus on the early and late stages. Curr Opin Rheumatol. 2020;32(1):57-63.
Deng LH, Gong Y, Huang XL, Chao HC. [Exosomes in the Pathogenesis of Rheumatoid Arthritis]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2019;41(4):556-61.
Tsai CY, Hsieh SC, Liu CW, Lu CH, Liao HT, Chen MH, et al. The Expression of Non-Coding RNAs and Their Target Molecules in Rheumatoid Arthritis: A Molecular Basis for Rheumatoid Pathogenesis and Its Potential Clinical Applications. International journal of molecular sciences. 2021;22(11).
Zuo J, Tang J, Lu M, Zhou Z, Li Y, Tian H, et al. Glycolysis Rate-Limiting Enzymes: Novel Potential Regulators of Rheumatoid Arthritis Pathogenesis. Front Immunol. 2021;12:779787.
Guo X, Chen G. Hypoxia-Inducible Factor Is Critical for Pathogenesis and Regulation of Immune Cell Functions in Rheumatoid Arthritis. Front Immunol. 2020;11:1668.
Yan L, Liang M, Yang T, Ji J, Jose Kumar Sreena GS, Hou X, et al. The Immunoregulatory Role of Myeloid-Derived Suppressor Cells in the Pathogenesis of Rheumatoid Arthritis. Front Immunol. 2020;11:568362.
Kwon EJ, Ju JH. Impact of Posttranslational Modification in Pathogenesis of Rheumatoid Arthritis: Focusing on Citrullination, Carbamylation, and Acetylation. International journal of molecular sciences. 2021;22(19).
Kriauciunas A, Gleiznys A, Gleiznys D, Janužis G. The Influence of Porphyromonas Gingivalis Bacterium Causing Periodontal Disease on the Pathogenesis of Rheumatoid Arthritis: Systematic Review of Literature. Cureus. 2019;11(5):e4775.
Edilova MI, Akram A, Abdul-Sater AA. Innate immunity drives pathogenesis of rheumatoid arthritis. Biomed J. 2021;44(2):172-82.
Lao MX, Xu HS. Involvement of long non-coding RNAs in the pathogenesis of rheumatoid arthritis. Chin Med J (Engl). 2020;133(8):941-50.
Demoruelle MK, Wilson TM, Deane KD. Lung inflammation in the pathogenesis of rheumatoid arthritis. Immunol Rev. 2020;294(1):124-32.
Cai WW, Yu Y, Zong SY, Wei F. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflamm Res. 2020;69(11):1087-101.
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, et al. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol. 2022;13:838884.
Evangelatos G, Fragoulis GE, Koulouri V, Lambrou GI. MicroRNAs in rheumatoid arthritis: From pathogenesis to clinical impact. Autoimmun Rev. 2019;18(11):102391.
Clayton SA, MacDonald L, Kurowska-Stolarska M, Clark AR. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis. Front Immunol. 2021;12:673916.
Lucchino B, Spinelli FR, Iannuccelli C, Guzzo MP, Conti F, Di Franco M. Mucosa-Environment Interactions in the Pathogenesis of Rheumatoid Arthritis. Cells. 2019;8(7).
El-Jawhari JJ, El-Sherbiny Y, McGonagle D, Jones E. Multipotent Mesenchymal Stromal Cells in Rheumatoid Arthritis and Systemic Lupus Erythematosus; From a Leading Role in Pathogenesis to Potential Therapeutic Saviors? Front Immunol. 2021;12:643170.
Fresneda Alarcon M, McLaren Z, Wright HL. Neutrophils in the Pathogenesis of Rheumatoid Arthritis and Systemic Lupus Erythematosus: Same Foe Different M.O. Front Immunol. 2021;12:649693.
Hashida R, Shimozuru Y, Chang J, Agosto-Marlin I, Waritani T, Terato K. New Studies of Pathogenesis of Rheumatoid Arthritis with Collagen-Induced and Collagen Antibody-Induced Arthritis Models: New Insight Involving Bacteria Flora. Autoimmune Dis. 2021;2021:7385106.
Zorgetto-Pinheiro VA, Machate DJ, Figueiredo PS, Marcelino G, Hiane PA, Pott A, et al. Omega-3 Fatty Acids and Balanced Gut Microbiota on Chronic Inflammatory Diseases: A Close Look at Ulcerative Colitis and Rheumatoid Arthritis Pathogenesis. J Med Food. 2022;25(4):341-54.
Giannini D, Antonucci M, Petrelli F, Bilia S, Alunno A, Puxeddu I. One year in review 2020: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2020;38(3):387-97.
Testa D, Calvacchi S, Petrelli F, Giannini D, Bilia S, Alunno A, et al. One year in review 2021: pathogenesis of rheumatoid arthritis. Clin Exp Rheumatol. 2021;39(3):445-52.
Berardi S, Corrado A, Maruotti N, Cici D, Cantatore FP. Osteoblast role in the pathogenesis of rheumatoid arthritis. Mol Biol Rep. 2021;48(3):2843-52.
Raterman HG, Bultink IE, Lems WF. Osteoporosis in patients with rheumatoid arthritis: an update in epidemiology, pathogenesis, and fracture prevention. Expert Opin Pharmacother. 2020;21(14):1725-37.
Xin PL, Jie LF, Cheng Q, Bin DY, Dan CW. Pathogenesis and Function of Interleukin-35 in Rheumatoid Arthritis. Front Pharmacol. 2021;12:655114.
Błyszczuk P, Szekanecz Z. Pathogenesis of ischaemic and non-ischaemic heart diseases in rheumatoid arthritis. RMD Open. 2020;6(1).
Petrelli F, Mariani FM, Alunno A, Puxeddu I. Pathogenesis of rheumatoid arthritis: one year in review 2022. Clin Exp Rheumatol. 2022;40(3):475-82.
Akiyama M, Kaneko Y. Pathogenesis, clinical features, and treatment strategy for rheumatoid arthritis-associated interstitial lung disease. Autoimmun Rev. 2022;21(5):103056.
Yamasaki S, Nakashima M, Ida H. Possible Roles of tRNA Fragments, as New Regulatory ncRNAs, in the Pathogenesis of Rheumatoid Arthritis. International journal of molecular sciences. 2021;22(17).
Mueller AL, Payandeh Z, Mohammadkhani N, Mubarak SMH, Zakeri A, Alagheband Bahrami A, et al. Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells. 2021;10(11).
Bartikoski BJ, De Oliveira MS, Do Espírito Santo RC, Dos Santos LP, Dos Santos NG, Xavier RM. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites. 2022;12(5).
Deane KD, Holers VM. Rheumatoid Arthritis Pathogenesis, Prediction, and Prevention: An Emerging Paradigm Shift. Arthritis Rheumatol. 2021;73(2):181-93.
Dai Y, Wang W, Yu Y, Hu S. Rheumatoid arthritis-associated interstitial lung disease: an overview of epidemiology, pathogenesis and management. Clin Rheumatol. 2021;40(4):1211-20.
Kadura S, Raghu G. Rheumatoid arthritis-interstitial lung disease: manifestations and current concepts in pathogenesis and management. Eur Respir Rev. 2021;30(160).
Szumilas K, Szumilas P, Słuczanowska-Głąbowska S, Zgutka K, Pawlik A. Role of Adiponectin in the Pathogenesis of Rheumatoid Arthritis. International journal of molecular sciences. 2020;21(21).
Karami J, Masoumi M, Khorramdelazad H, Bashiri H, Darvishi P, Sereshki HA, et al. Role of autophagy in the pathogenesis of rheumatoid arthritis: Latest evidence and therapeutic approaches. Life Sci. 2020;254:117734.
Bo M, Jasemi S, Uras G, Erre GL, Passiu G, Sechi LA. Role of Infections in the Pathogenesis of Rheumatoid Arthritis: Focus on Mycobacteria. Microorganisms. 2020;8(10).
Rajabinejad M, Salari F, Gorgin Karaji A, Rezaiemanesh A. The role of myeloid-derived suppressor cells in the pathogenesis of rheumatoid arthritis; anti- or pro-inflammatory cells? Artif Cells Nanomed Biotechnol. 2019;47(1):4149-58.
Frangos T, Maret W. Zinc and Cadmium in the Aetiology and Pathogenesis of Osteoarthritis and Rheumatoid Arthritis. Nutrients. 2020;13(1).
Xavier RJ, Huett A, Rioux JD. Autophagy as an important process in gut homeostasis and Crohn's disease pathogenesis. Gut. 2008;57(6):717-20.
Pravda J. Crohn's disease: evidence for involvement of unregulated transcytosis in disease etio-pathogenesis. World J Gastroenterol. 2011;17(11):1416-26.
Brand S. Crohn's disease: Th1, Th17 or both? The change of a paradigm: new immunological and genetic insights implicate Th17 cells in the pathogenesis of Crohn's disease. Gut. 2009;58(8):1152-67.
Guo C, Shen J. Cytoskeletal Organization and Cell Polarity in the Pathogenesis of Crohn's Disease. Clin Rev Allergy Immunol. 2021;60(2):164-74.
Kumar A, Lukin D, Battat R, Schwartzman M, Mandl LA, Scherl E, et al. Defining the phenotype, pathogenesis and treatment of Crohn's disease associated spondyloarthritis. J Gastroenterol. 2020;55(7):667-78.
Gu P, Feagins LA. Diet in the Pathogenesis and Management of Crohn's Disease. Gastroenterol Clin North Am. 2022;51(2):319-35.
Pfeffer-Gik T, Levine A. Dietary clues to the pathogenesis of Crohn's disease. Dig Dis. 2014;32(4):389-94.
Caprilli R, Frieri G. The dyspeptic macrophage 30 years later: an update in the pathogenesis of Crohn's disease. Dig Liver Dis. 2009;41(2):166-8.
Levine A, Wine E. Effects of enteral nutrition on Crohn's disease: clues to the impact of diet on disease pathogenesis. Inflamm Bowel Dis. 2013;19(6):1322-9.
Miyoshi J, Sofia MA, Pierre JF. The evidence for fungus in Crohn's disease pathogenesis. Clin J Gastroenterol. 2018;11(6):449-56.
De Hertogh G, Aerssens J, Geboes KP, Geboes K. Evidence for the involvement of infectious agents in the pathogenesis of Crohn's disease. World J Gastroenterol. 2008;14(6):845-52.
Hedin CR, Stagg AJ, Whelan K, Lindsay JO. Family studies in Crohn's disease: new horizons in understanding disease pathogenesis, risk and prevention. Gut. 2012;61(2):311-8.
Brain O, Cooney R, Simmons A, Jewell D. Functional consequences of mutations in the autophagy genes in the pathogenesis of Crohn's disease. Inflamm Bowel Dis. 2012;18(4):778-81.
Catalan-Serra I, Sandvik AK, Bruland T, Andreu-Ballester JC. Gammadelta T Cells in Crohn's Disease: A New Player in the Disease Pathogenesis? J Crohns Colitis. 2017;11(9):1135-45.
Sharp RC, Abdulrahim M, Naser ES, Naser SA. Genetic Variations of PTPN2 and PTPN22: Role in the Pathogenesis of Type 1 Diabetes and Crohn's Disease. Front Cell Infect Microbiol. 2015;5:95.
Bamba S, Andoh A. [Impact of Th17 cells in the pathogenesis of Crohn's disease]. Nihon Naika Gakkai Zasshi. 2011;100(1):133-8.
Hruz P, Eckmann L. Innate immune defence: NOD2 and autophagy in the pathogenesis of Crohn's disease. Swiss Med Wkly. 2010;140:w13135.
Heerasing N, Kennedy NA. Interaction Between NOD2 and Smoking in the Pathogenesis of Crohn's Disease. EBioMedicine. 2017;21:49-50.
Haag LM, Siegmund B. Intestinal Microbiota and the Innate Immune System - A Crosstalk in Crohn's Disease Pathogenesis. Front Immunol. 2015;6:489.
Khanna S, Raffals LE. The Microbiome in Crohn's Disease: Role in Pathogenesis and Role of Microbiome Replacement Therapies. Gastroenterol Clin North Am. 2017;46(3):481-92.
Fernández-Ponce C, Navarro Quiroz R, Díaz Perez A, Aroca Martinez G, Cadena Bonfanti A, Acosta Hoyos A, et al. MicroRNAs overexpressed in Crohn's disease and their interactions with mechanisms of epigenetic regulation explain novel aspects of Crohn's disease pathogenesis. Clin Epigenetics. 2021;13(1):39.
Vavricka SR, Rogler G. New insights into the pathogenesis of Crohn's disease: are they relevant for therapeutic options? Swiss Med Wkly. 2009;139(37-38):527-34.
Ambrůzová B, Rédová M, Michálek J, Sachlová M, Slabý O. [New knowledge of the pathogenesis of Crohn's disease]. Vnitr Lek. 2012;58(4):291-8.
Mathew CG. New links to the pathogenesis of Crohn disease provided by genome-wide association scans. Nat Rev Genet. 2008;9(1):9-14.
Blagov A, Zhigmitova EB, Sazonova MA, Mikhaleva LM, Kalmykov V, Shakhpazyan NK, et al. Novel Models of Crohn's Disease Pathogenesis Associated with the Occurrence of Mitochondrial Dysfunction in Intestinal Cells. International journal of molecular sciences. 2022;23(9).
Davis WC. On deaf ears, Mycobacterium avium paratuberculosis in pathogenesis Crohn's and other diseases. World J Gastroenterol. 2015;21(48):13411-7.
Baban YN, Edicheria CM, Joseph J, Kaur P, Mostafa JA. Osteoporosis Complications in Crohn's Disease Patients: Factors, Pathogenesis, and Treatment Outlines. Cureus. 2021;13(12):e20564.
Alhagamhmad MH, Day AS, Lemberg DA, Leach ST. An overview of the bacterial contribution to Crohn disease pathogenesis. J Med Microbiol. 2016;65(10):1049-59.
Alemany-Cosme E, Sáez-González E, Moret I, Mateos B, Iborra M, Nos P, et al. Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel). 2021;10(1).
Schmoyer CJ, Saidman J, Bohl JL, Bierly CL, Kuemmerle JF, Bickston SJ. The Pathogenesis and Clinical Management of Stricturing Crohn Disease. Inflamm Bowel Dis. 2021;27(11):1839-52.
Boyapati R, Satsangi J, Ho GT. Pathogenesis of Crohn's disease. F1000Prime Rep. 2015;7:44.
Bosca-Watts MM, Tosca J, Anton R, Mora M, Minguez M, Mora F. Pathogenesis of Crohn's disease: Bug or no bug. World J Gastrointest Pathophysiol. 2015;6(1):1-12.
Li J, Mao R, Kurada S, Wang J, Lin S, Chandra J, et al. Pathogenesis of fibrostenosing Crohn's disease. Transl Res. 2019;209:39-54.
Ahmed T, Rieder F, Fiocchi C, Achkar JP. Pathogenesis of postoperative recurrence in Crohn's disease. Gut. 2011;60(4):553-62.
García Martínez FJ, Menchén L. Pathogenesis: common pathways between hidradenitis suppurativa and Crohn disease. Actas Dermosifiliogr. 2016;107 Suppl 2:13-20.
Panés J, Rimola J. Perianal fistulizing Crohn's disease: pathogenesis, diagnosis and therapy. Nat Rev Gastroenterol Hepatol. 2017;14(11):652-64.
Mulsow J. Prof Ronan O'Connell Festschrift: Stricture pathogenesis in Crohn's disease-the role of intestinal fibroblasts. Ir J Med Sci. 2018;187(4):1139-42.
Manuc TE, Manuc MM, Diculescu MM. Recent insights into the molecular pathogenesis of Crohn's disease: a review of emerging therapeutic targets. Clin Exp Gastroenterol. 2016;9:59-70.
Wang K, Wu LY, Dou CZ, Guan X, Wu HG, Liu HR. Research Advance in Intestinal Mucosal Barrier and Pathogenesis of Crohn's Disease. Gastroenterol Res Pract. 2016;2016:9686238.
Tozer PJ, Lung P, Lobo AJ, Sebastian S, Brown SR, Hart AL, et al. Review article: pathogenesis of Crohn's perianal fistula-understanding factors impacting on success and failure of treatment strategies. Aliment Pharmacol Ther. 2018;48(3):260-9.
Zielińska A, Siwiński P, Sobolewska-Włodarczyk A, Wiśniewska-Jarosińska M, Fichna J, Włodarczyk M. The role of adipose tissue in the pathogenesis of Crohn's disease. Pharmacol Rep. 2019;71(1):105-11.
Naser SA, Arce M, Khaja A, Fernandez M, Naser N, Elwasila S, et al. Role of ATG16L, NOD2 and IL23R in Crohn's disease pathogenesis. World J Gastroenterol. 2012;18(5):412-24.
Hornschuh M, Wirthgen E, Wolfien M, Singh KP, Wolkenhauer O, Däbritz J. The role of epigenetic modifications for the pathogenesis of Crohn's disease. Clin Epigenetics. 2021;13(1):108.
Segal AW. The role of neutrophils in the pathogenesis of Crohn's disease. Eur J Clin Invest. 2018;48 Suppl 2:e12983.
von der Weid PY, Rehal S, Ferraz JG. Role of the lymphatic system in the pathogenesis of Crohn's disease. Curr Opin Gastroenterol. 2011;27(4):335-41.
Li Y, Zhu W, Zuo L, Shen B. The Role of the Mesentery in Crohn's Disease: The Contributions of Nerves, Vessels, Lymphatics, and Fat to the Pathogenesis and Disease Course. Inflamm Bowel Dis. 2016;22(6):1483-95.
Kurahara LH, Hiraishi K, Sumiyoshi M, Doi M, Hu Y, Aoyagi K, et al. Significant contribution of TRPC6 channel-mediated Ca(2+) influx to the pathogenesis of Crohn's disease fibrotic stenosis. J Smooth Muscle Res. 2016;52(0):78-92.
Li N, Shi RH. Updated review on immune factors in pathogenesis of Crohn's disease. World J Gastroenterol. 2018;24(1):15-22.
White JH. Vitamin D deficiency and the pathogenesis of Crohn's disease. J Steroid Biochem Mol Biol. 2018;175:23-8.
Calvo JR, Guerrero JM, Osuna C, Molinero P, Carrillo-Vico A. Melatonin triggers Crohn's disease symptoms. J Pineal Res. 2002;32(4):277-8.
Shayowitz M, Bressler M, Ricardo AP, Grudnikoff E. Infliximab-induced Depression and Suicidal Behavior in Adolescent with Crohn's Disease: Case Report and Review of Literature. Pediatr Qual Saf. 2019;4(6):e229.
Iskandar HN, Linan EE, Patel A, Moore R, Lasanajak Y, Gyawali CP, et al. Self-reported sleep disturbance in Crohn's disease is not confirmed by objective sleep measures. Sci Rep. 2020;10(1):1980.