

AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine

Authors:

Mehrdad Farrokhi

ERIS Research Institute

Horrieh Abbasmofrad

Rahman Institute of Higher Education

Mitra Karami

Shahid Beheshti University of Medical Sciences

Hossein Boustani Hezarani

Azerbaijan Medical University

Seyed Shahabedin Alemohammad

Iran University of Medical Sciences

Javaneh Atighi

Qazvin University of Medical Sciences

Peyman Alipoor

Kurdistan University Of Medical Sciences

Maryam Savardashtaki

Mashhad University of Medical Sciences

Mahya Naghipoor-Alamdar

Amirkabir University of Technology (Tehran Polytechnic)

Farhad Shafiei
Tehran University of Medical Sciences

Delaram Naderi
Iran University of Medical Sciences

Omid Fakharzadeh Moghadam
Mashhad University of Medical Sciences

Behnaz Shirgir
Near East University

Maryam Masoumzadeh
Belarusian State Medical State University

Asma Sepahdar
Lorestan University of Medical Sciences

Zahra Tajik
Islamic Azad University, Shahr - e - Rey Branch

Mehdi Mohammadpour
Iran University of Medical Sciences

Ardeshir Zargar
Andhra University

Behzad Paeizi
Andhra University

Farzad Esfandyari
Andhra University

Hamed Sabzehie
ERIS Research Institute

Mina Ghazali
Esfahan University

Amirali Mohammadi
Tehran University of Medical Sciences

Meisam Sargazi
Zahedan University of Medical Sciences

Reza Judi Chelan
Yasuj of University of Medical Sciences

Amirreza Sabahizadeh
Shiraz University of Medical Sciences

Amirhossein Bahador
University of California, Los Angeles

Negareh Salehabadi
Mazandaran University of Medical Sciences

Sanaz Amiri Marbini
University Medical Center Hamburg-Eppendorf

Saman Abdollahpour
Shahid Beheshti University of Medical Sciences

Parsa Farzan
Hamadan University of Medical Sciences

Khadijeh Harati
ERIS Research Institute

Book Details:

Publisher: PreferPub and Kindle

Publication Date: January 2026

Language: English

Dimensions: 5 x 0.39 x 8 inches

© PreferPub and Kindle 2026

ISBN-13: 979-8246223697

This peer-reviewed book is subject to copyright.
All rights are reserved by the Publisher,
whether the whole or part of the material is
concerned, specially the rights of translation,
reprinting, result of illustrations, recitation,
broadcasting, reproduction on microfilms or in
any other physical way, and transmission or
information storage and retrieval, electronic
adaptation, computer software, or by similar or
dissimilar methodology now known or hereafter
developed.

CONTENTS

Chapter

- 1- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Renal Diseases
- 2- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Neurological Diseases
- 3- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Gastrointestinal Diseases
- 4- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Cardiac Diseases
- 5- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Dermatological Diseases
- 6- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Ophthalmological Diseases
- 7- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Oral Diseases
- 8- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in ENT Diseases
- 9- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Orthopedic Diseases
- 10- AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Other Diseases

1- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN RENAL DISEASES

Background

Renal diseases constitute a major global health challenge, affecting hundreds of millions of individuals and contributing substantially to long-term morbidity, premature mortality, and escalating healthcare costs. Chronic kidney disease, acute kidney injury, glomerular disorders, inherited renal diseases, and kidney complications secondary to diabetes and hypertension together impose a sustained clinical and socioeconomic burden. A defining characteristic of many renal diseases is their silent and progressive nature, with early stages often remaining asymptomatic until significant and frequently irreversible kidney damage has occurred. Consequently, delayed diagnosis remains a persistent problem, limiting opportunities for early intervention, disease modification, and prevention of complications.

Conventional renal care is predominantly reactive and clinic centered. It relies on episodic assessments, such as periodic laboratory testing and imaging, which may fail to capture dynamic physiological changes occurring between clinical

visits. This approach often overlooks early warning signals of disease progression, acute deterioration, or treatment non-adherence. As a result, patients frequently present with advanced disease, reduced therapeutic options, and poorer outcomes.

Artificial intelligence has emerged as a transformative technology capable of addressing these limitations and reshaping renal care. Artificial intelligence encompasses machine learning, deep learning, and advanced computational analytics that can process large, complex, and high-dimensional datasets. In nephrology, artificial intelligence is uniquely positioned to integrate diverse sources of information, including laboratory biomarkers, imaging data, genomics, electronic health records, wearable sensor data, and patient-reported outcomes. This integrative capacity supports a paradigm shift toward proactive, continuous, and patient-centered care.

Artificial intelligence-driven approaches enable three interrelated pillars of modern renal care: self-diagnosis, self-monitoring, and personalized medicine. Self-diagnosis tools empower individuals to recognize early signs of renal dysfunction and risk outside traditional healthcare settings. Self-monitoring systems allow continuous tracking of physiological and behavioral factors that influence kidney health,

facilitating early detection of deterioration and timely intervention. Personalized medicine applications use artificial intelligence to tailor diagnostic strategies, prognostic assessments, and treatment plans to individual patient profiles, accounting for biological variability, comorbidities, and lifestyle factors. Together, these innovations promise to improve early detection, slow disease progression, enhance quality of life, and reduce the overall burden of renal diseases.

This chapter provides a comprehensive overview of artificial intelligence for self-diagnosis, self-monitoring, and personalized medicine in renal diseases. It examines current technologies, clinical applications, methodological advances, ethical and practical considerations, and future directions, highlighting how intelligent systems can transform nephrology by empowering patients while supporting clinicians with data-driven insights.

Artificial Intelligence for Self-Diagnosis in Renal Diseases

Self-diagnosis in renal diseases has historically been limited by the complexity and asymptomatic nature of early kidney dysfunction. Many patients remain unaware of declining renal function until late stages, when clinical manifestations such as edema, fatigue, electrolyte disturbances, or

uremic symptoms emerge. Artificial intelligence offers novel opportunities to overcome this challenge by enabling early risk identification and preliminary assessment through accessible digital platforms.

Artificial intelligence-based self-diagnosis systems rely on machine learning models trained on large datasets derived from laboratory values, demographic characteristics, clinical histories, and sometimes imaging features. These models can identify subtle patterns associated with early kidney dysfunction, including trends in serum creatinine, estimated glomerular filtration rate trajectories, albuminuria or proteinuria patterns, and electrolyte imbalances. When incorporated into patient-facing tools, such algorithms can provide early alerts that prompt individuals to seek medical evaluation before irreversible renal damage occurs.

Smartphone applications and web-based platforms increasingly integrate artificial intelligence-driven risk calculators for chronic kidney disease. These tools allow users to input routine laboratory results, blood pressure measurements, medication usage, comorbid conditions, and lifestyle factors. Machine learning algorithms then estimate individual risk of kidney disease or predict future decline in renal function. Such platforms are particularly valuable for individuals with known risk factors, including

diabetes, hypertension, cardiovascular disease, obesity, and family history of renal disorders. Although these tools do not replace formal clinical diagnosis, they serve as early warning systems that promote awareness, engagement, and timely referral to healthcare providers.

Artificial intelligence also supports self-diagnosis through automated interpretation of urinalysis data. Portable urine testing devices and smartphone-based dipstick readers can capture images of urine strips and analyze colorimetric changes using computer vision algorithms. These systems can detect proteinuria, hematuria, glycosuria, leukocyturia, and other abnormalities commonly associated with renal pathology. By enabling frequent home-based testing, artificial intelligence-driven urinalysis tools facilitate early recognition of pathological changes that might otherwise remain undetected between clinic visits.

In inherited and rare renal diseases, artificial intelligence-based symptom analysis and pattern recognition tools can assist patients in identifying disease-specific warning signs. By combining patient-reported symptoms with historical clinical data, these systems can suggest potential diagnostic pathways or recommend specialist evaluation. This approach is particularly relevant in conditions such as autosomal dominant polycystic kidney disease, Alport syndrome, and

rare tubulopathies, where early recognition can influence surveillance strategies and therapeutic planning.

Despite their promise, artificial intelligence-driven self-diagnosis tools must be implemented cautiously. False-positive results may cause unnecessary anxiety, increased healthcare utilization, and unwarranted testing, while false-negative results may delay diagnosis and treatment. Clear communication of limitations, transparent risk estimates, and integration with clinician oversight are essential. Self-diagnosis systems should be viewed as supportive and educational tools that enhance patient awareness and engagement rather than as substitutes for professional medical evaluation.

Artificial Intelligence for Self-Monitoring in Renal Diseases

Self-monitoring is a critical component of effective renal disease management, particularly for chronic kidney disease, patients receiving dialysis, and kidney transplant recipients. Renal function is influenced by dynamic and interrelated factors, including blood pressure, fluid balance, diet, physical activity, medication adherence, and comorbid conditions. Artificial intelligence enhances self-monitoring by enabling continuous, real-time assessment of these variables and translating complex data streams

into actionable insights.

Wearable devices and home monitoring technologies generate large volumes of physiological data relevant to kidney health. These include blood pressure, heart rate variability, physical activity levels, sleep patterns, body weight, and hydration status. Artificial intelligence algorithms analyze these continuous data streams to identify trends, detect deviations from individual baselines, and predict adverse events. For example, machine learning models can recognize early signs of fluid overload by analyzing subtle changes in weight, activity patterns, and cardiovascular parameters, prompting early intervention to prevent hospitalization.

Home blood pressure monitoring is particularly important in renal diseases, as hypertension is both a major cause and a consequence of kidney dysfunction. Artificial intelligence-powered platforms integrate blood pressure readings with contextual factors such as medication timing, dietary sodium intake, physical activity, and circadian patterns. These systems can identify poor blood pressure control, detect masked or nocturnal hypertension, and provide personalized feedback to patients and clinicians. Continuous self-monitoring supported by artificial intelligence allows more precise adjustment of antihypertensive therapy and

improved long-term blood pressure control.

Artificial intelligence also plays an expanding role in self-monitoring for patients undergoing dialysis. Remote monitoring systems collect data from dialysis machines, wearable sensors, and patient-reported outcomes. Machine learning models analyze treatment parameters, ultrafiltration rates, blood pressure responses, and symptom reports to identify early signs of complications such as intradialytic hypotension, volume imbalance, access dysfunction, or inadequate dialysis delivery. These insights support proactive treatment modifications and enhance patient safety.

For kidney transplant recipients, self-monitoring is essential to detect early signs of graft dysfunction, rejection, or infection. Artificial intelligence-driven platforms can integrate laboratory values, medication adherence data, wearable sensor metrics, and patient-reported symptoms to identify patterns associated with graft injury. Predictive models can alert patients and clinicians to subtle changes that warrant further investigation, potentially improving graft survival and long-term outcomes.

Dietary management is another cornerstone of renal disease care. Artificial intelligence-powered nutrition tracking applications can analyze dietary intake, estimate sodium, potassium, phosphorus, and protein consumption, and

provide individualized recommendations aligned with renal function and treatment goals. By integrating dietary data with laboratory trends and clinical parameters, machine learning models support more effective dietary self-monitoring and reduce the risk of nutrition-related complications.

The success of artificial intelligence-driven self-monitoring depends on patient engagement, usability, and data quality. Systems must present information in an understandable and actionable manner, avoiding excessive alerts or information overload. Ensuring data privacy, interoperability with clinical systems, and seamless integration into routine care pathways remains a key challenge.

Artificial Intelligence for Personalized Medicine in Renal Diseases

Personalized medicine seeks to tailor prevention, diagnosis, and treatment strategies to the unique biological, clinical, and lifestyle characteristics of each patient. In renal diseases, where disease trajectories and treatment responses vary widely, artificial intelligence provides powerful tools to operationalize personalized care.

Artificial intelligence-driven predictive models can estimate individual risk of disease progression, cardiovascular complications,

hospitalization, and mortality. By integrating longitudinal laboratory data, comorbidities, demographic variables, and lifestyle factors, machine learning algorithms generate individualized risk profiles that support clinical decision-making. These models enable clinicians to stratify patients based on risk and allocate resources more effectively, focusing intensive interventions on those most likely to benefit.

In chronic kidney disease, artificial intelligence models have been developed to predict decline in glomerular filtration rate, progression to kidney failure, and the need for renal replacement therapy. Such predictions support timely referral to nephrology, preparation for dialysis or transplantation, and shared decision-making regarding treatment options. Personalized prognostic information also informs discussions about disease trajectory, quality of life, and advance care planning.

Pharmacological management in renal diseases is particularly complex due to altered drug clearance, polypharmacy, and increased susceptibility to adverse drug reactions. Artificial intelligence supports personalized medication management by predicting drug response, optimizing dosing, and identifying potential nephrotoxicity. Machine learning models analyze patient-specific factors such as renal function, genetic variants, comorbid conditions, and

concomitant medications to guide safer and more effective prescribing decisions.

The integration of genomics and multi-omics data represents a major frontier in personalized nephrology. Artificial intelligence enables analysis of genomic, transcriptomic, proteomic, and metabolomic datasets to identify disease subtypes, pathogenic mechanisms, and therapeutic targets. In glomerular diseases, artificial intelligence-driven clustering approaches can reveal molecular phenotypes associated with distinct clinical outcomes and treatment responses, supporting precision therapy and improved trial design.

In kidney transplantation, artificial intelligence facilitates personalized immunosuppression strategies by modeling individual rejection risk and drug metabolism. Predictive algorithms can balance the competing risks of rejection, infection, and drug toxicity, supporting tailored immunosuppressive regimens that enhance graft survival and patient safety.

Artificial intelligence also enables dynamic personalization through continuous learning. As new data are generated through self-monitoring and clinical encounters, predictive models can update risk estimates and treatment recommendations in near real time. This adaptive approach transforms renal care from static, protocol-driven management to responsive,

individualized strategies that evolve with the patient's condition.

Ethical, Clinical, and Practical Challenges

Despite its transformative potential, the application of artificial intelligence to self-diagnosis, self-monitoring, and personalized medicine in renal diseases raises important ethical, clinical, and practical challenges. Data privacy and security are paramount, as artificial intelligence systems rely on large volumes of sensitive health data. Robust governance frameworks, encryption methods, and regulatory compliance are essential to protect patient confidentiality and maintain trust.

Algorithmic bias represents a significant concern. If training datasets do not adequately represent diverse populations, artificial intelligence models may produce biased predictions that exacerbate existing health disparities. Ensuring diversity in data sources and continuous evaluation of model performance across demographic and clinical subgroups is essential for equitable implementation.

Interpretability and transparency are particularly important in nephrology, where treatment decisions can have profound consequences. Highly complex models may achieve strong predictive performance but offer limited insight

into decision processes. Explainable artificial intelligence approaches that clarify model reasoning are increasingly important to support clinician confidence and informed patient engagement.

Clinical integration also poses challenges. Artificial intelligence tools must complement existing workflows and enhance, rather than burden, clinical practice. Successful implementation requires interoperability with electronic health records, appropriate clinician training, and clear delineation of responsibilities between patients and healthcare providers. Self-diagnosis and self-monitoring tools should empower patients while preserving clinician oversight and accountability.

Regulatory and reimbursement frameworks must evolve to support responsible adoption. Clear standards for validation, safety, and effectiveness are required, particularly for patient-facing applications. Demonstrating real-world clinical benefit through rigorous evaluation remains essential to justify widespread implementation.

Future Directions and Opportunities

The future of artificial intelligence in renal diseases lies in deeper integration across self-diagnosis, self-monitoring, and personalized medicine. Advances in sensor technologies, mobile health platforms, and data integration

will expand the scope and accuracy of patient-generated data. Artificial intelligence models will increasingly incorporate behavioral, environmental, and social determinants of health to provide a more holistic understanding of renal disease risk and management.

Digital twin concepts offer particularly exciting possibilities. Virtual representations of individual patients could simulate disease progression, treatment responses, and lifestyle interventions *in silico*, supporting highly personalized decision-making in nephrology. In dialysis care, digital twins could optimize treatment prescriptions, fluid management, and long-term outcomes under different scenarios.

Collaborative ecosystems involving patients, clinicians, data scientists, engineers, and policymakers will be critical to realizing the full potential of artificial intelligence. Patient engagement and co-design of tools will improve usability and acceptance, while interdisciplinary collaboration will ensure clinical relevance, ethical integrity, and sustainability.

In conclusion, artificial intelligence represents a powerful enabler of patient-centered renal care. By supporting early self-diagnosis, continuous self-monitoring, and truly personalized medicine, intelligent systems can help shift nephrology toward a proactive, preventive, and precision-oriented model. While challenges remain,

responsible and thoughtful integration of artificial intelligence holds substantial promise for improving outcomes, enhancing quality of life, and reducing the global burden of renal diseases.

2- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN NEUROLOGICAL DISEASES

Background

Neurological disorders remain a major public health concern because of their diagnostic and therapeutic complexity. Conditions such as Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and psychosis often present with subtle and nonspecific symptoms in their early stages, making timely and accurate diagnosis particularly challenging. Artificial intelligence is increasingly transforming the field of neurology by enhancing diagnostic accuracy, clinical care, and treatment strategies through advanced machine learning techniques and large scale data analysis. These developments contribute directly to improvements in personalized medicine, an approach in which treatment strategies are tailored according to an individual's genetic, physiological, and clinical characteristics. This chapter highlights three key areas in which artificial intelligence plays an important role in neurology, including self-diagnosis, self-monitoring, and personalized medicine, while also addressing current limitations and future

potential benefits.

Artificial intelligence has emerged as a transformative force in modern neurology, reshaping diagnostic accuracy, patient monitoring, and therapeutic strategies. The integration of artificial intelligence algorithms, particularly deep learning methods and neural networks, into neurological practice enables clinicians to identify subtle patterns that are often imperceptible to human observation. Through sophisticated image analysis techniques, artificial intelligence systems can detect early biomarkers of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis with a level of precision that was previously unattainable.

Machine learning models trained on multimodal datasets, including magnetic resonance imaging, computed tomography, electroencephalography, and comprehensive clinical records, facilitate the development of personalized diagnostic pathways. For example, convolutional neural networks have demonstrated strong performance in identifying minute brain lesions and classifying tumor types based on complex imaging features. In parallel, artificial intelligence driven analysis of electroencephalography data has enabled near real time prediction of seizure activity in patients with epilepsy, improving preventive strategies and optimizing medication management. These

advancements not only enhance clinical outcomes but also help reduce the diagnostic workload placed on healthcare systems.

In addition to diagnostics, artificial intelligence plays an important role in neurorehabilitation. Robotic assisted rehabilitation systems powered by adaptive algorithms can continuously monitor motor recovery and dynamically adjust exercise intensity based on individual patient performance metrics. Reinforcement learning models establish personalized feedback loops that support neuroplasticity and promote faster functional recovery following stroke or traumatic brain injury. The integration of wearable sensors with artificial intelligence based motion tracking further enables continuous assessment of gait, balance, and coordination within real world environments, providing clinicians with objective and longitudinal measures of recovery.

Within the research domain, artificial intelligence facilitates large scale data integration and accelerates hypothesis generation. Natural language processing tools are increasingly applied to analyze scientific literature and clinical documentation, uncovering associations between genetic profiles and neurological outcomes. This approach supports the identification of novel biomarkers and therapeutic targets, effectively bridging molecular neuroscience and clinical practice. In addition, the predictive capabilities of

artificial intelligence have been applied to model disease progression, offering clinicians dynamic forecasts that can inform proactive and timely interventions.

Despite these advances, ethical and interpretability challenges remain central to the adoption of artificial intelligence in neurology. Although artificial intelligence algorithms may outperform traditional diagnostic tools, the opaque nature of many deep learning models raises concerns regarding transparency, explainability, and clinical accountability. To address these concerns, ongoing efforts are focused on the development of explainable artificial intelligence frameworks that clarify algorithmic reasoning and support safe and trustworthy decision making. Furthermore, issues related to data privacy, algorithmic bias, and lack of standardization must be carefully addressed to ensure equitable implementation across diverse patient populations.

The future of artificial intelligence in neurology is inherently interdisciplinary and depends on close collaboration among neurologists, computer scientists, data analysts, and bioengineers. As computational models continue to evolve, they are expected to integrate genetic, behavioral, and environmental factors to provide a more comprehensive understanding of neurological disorders. Ultimately, the role of artificial

intelligence in neurology extends beyond automation and efficiency. It represents a developing partnership between human clinical expertise and machine intelligence, aimed at deciphering the complexity of the human brain and improving neurological care on a global scale.

Self-Diagnosis in Neurological Diseases

Early diagnosis of neurological disorders represents one of the most significant challenges in modern healthcare. Diseases such as Alzheimer's disease, Parkinson's disease, and epilepsy are characterized by early symptoms that are often vague and nonspecific, which complicates early detection and intervention. Nevertheless, recent advances in artificial intelligence and machine learning have created new opportunities for self-diagnosis and early identification of these conditions. Machine learning algorithms have been increasingly applied in self-diagnostic approaches for neurological disorders because of their ability to process large and complex datasets, including medical imaging, genetic information, and reported neurological symptoms.

These algorithms are capable of identifying subtle patterns and associations that may not be readily apparent to human observers, enabling more accurate predictions regarding the onset and progression of specific neurological disorders.

In particular, in conditions such as Alzheimer's disease and Parkinson's disease, the analysis of medical imaging data and biological markers has demonstrated the potential to identify signs of neurological impairment before conventional clinical diagnosis is established. In artificial intelligence based self-diagnostic systems, diverse data sources are integrated to model disease patterns and predict an individual's future health status. These systems can assist individuals in recognizing minor changes in their neurological or cognitive function, prompting timely medical consultation before disease progression becomes advanced.

Another important application of artificial intelligence in self-diagnosis involves the analysis of genetic information. By applying sophisticated machine learning algorithms, it is possible to identify genetic patterns and risk factors associated with neurological disorders. This capability enables more precise predictions about disease onset, progression, and potential treatment strategies, while also increasing individual awareness of possible future health risks. However, the routine integration of these self-diagnostic systems into clinical practice depends heavily on the availability of large, high quality, and well curated datasets. A major challenge in the medical application of artificial intelligence is ensuring that these systems are transparent and interpretable. For both clinicians

and patients to trust predictive technologies, it is essential to understand how artificial intelligence models generate their outputs and recommendations.

The evolving role of artificial intelligence in neurological self-diagnosis therefore represents a valuable pathway for earlier detection and intervention. The ability of these technologies to analyze complex datasets and uncover subtle patterns directly enhances diagnostic accuracy and clinical decision making. Fully realizing their potential requires continued research into improved data collection strategies and the development of transparent, interpretable, and clinically reliable systems.

Self-Monitoring in Neurological Diseases

Self-monitoring is a critical component in the management of neurological diseases, as it provides patients with greater control over their condition by enabling them to track symptoms and adjust daily activities as needed. Wearable devices have emerged as highly effective tools for continuous and real time monitoring of a wide range of physiological parameters. These devices, often integrated with mobile applications, allow patients to observe changes in movement patterns, brain activity, heart rate, sleep behavior, and other vital signs relevant to neurological health.

The use of such technologies enables the detection of subtle physiological changes that may not be captured through traditional clinical assessments, thereby offering a more comprehensive picture of disease progression. Continuous data collected through wearable sensors can be analyzed to identify early signs of deterioration or improvement, creating opportunities for timely clinical intervention before symptoms become severe. This approach supports proactive disease management and may reduce the frequency of emergency interventions or hospitalizations.

In addition, artificial intelligence powered technologies have substantially enhanced the effectiveness of self-monitoring by delivering individualized and context specific feedback regarding a patient's health status. The incorporation of explainable artificial intelligence into monitoring tools ensures that algorithm generated predictions and recommendations are not only accurate but also understandable to users. This transparency is essential for building trust and empowering patients to make informed decisions about their health. Explainable artificial intelligence approaches are particularly valuable because they provide clinicians and patients with insight into the reasoning behind artificial intelligence driven recommendations, thereby fostering a more collaborative and informed approach to chronic disease management.

Personalized Medicine in Neurology

Artificial intelligence powered personalized medicine is fundamentally changing how neurological diseases are diagnosed, monitored, and treated. Artificial intelligence based models enable the customization of therapeutic strategies by integrating genetic, clinical, behavioral, and lifestyle data from individual patients. These systems support the identification of biomarkers and genetic predispositions that play a critical role in the development of tailored treatment approaches for neurological conditions such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis.

By analyzing comprehensive patient data, artificial intelligence can predict disease progression and recommend therapeutic interventions that are most likely to be effective for a specific individual, thereby improving treatment outcomes and reducing unnecessary interventions. Furthermore, the application of explainable artificial intelligence enhances the transparency of these models, allowing healthcare professionals to better understand algorithmic recommendations and increasing patient confidence in personalized treatment plans. The integration of artificial intelligence, personalized medicine, and data driven algorithms also facilitates the identification of biomarkers in complex neuropsychiatric conditions, such

as schizophrenia, where patient responses to treatment can vary widely and unpredictably.

Future Trends in Artificial Intelligence for Neurological Diseases

Artificial intelligence in neurology holds substantial promise for improving the diagnosis, treatment, and long term management of neurological disorders, yet it continues to face significant challenges. One of the most pressing issues is the generalizability of artificial intelligence models. Many algorithms demonstrate high performance in controlled experimental settings but struggle to maintain accuracy when applied to real world populations characterized by genetic, social, and environmental diversity. Data quality and representativeness remain major concerns, as limited diversity in training datasets can compromise model reliability.

Additional challenges include concerns related to data privacy and security, as well as disparities in technological infrastructure across different regions, which may slow the widespread implementation of artificial intelligence based solutions. Another critical barrier is the lack of transparency and interpretability in algorithmic decision making, often described as the black box nature of artificial intelligence models. This limitation poses a significant obstacle to building

trust among clinicians and patients.

Despite these challenges, future developments in this field are likely to focus on the integration of multimodal data sources, including medical imaging, genetic information, and wearable sensor data, alongside the development of scalable foundation models and explainable artificial intelligence frameworks. Strengthening governance structures, improving data standardization, and fostering interdisciplinary collaboration will be essential to successfully translate artificial intelligence innovations from research environments into routine clinical practice.

3- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN GASTROINTESTINAL DISEASES

Background

Gastrointestinal diseases constitute a major global health burden, affecting populations across all age groups and contributing significantly to morbidity, mortality, and healthcare expenditure. Disorders of the gastrointestinal tract encompass a broad spectrum of conditions, including functional diseases such as irritable bowel syndrome, inflammatory disorders such as inflammatory bowel disease, structural abnormalities, gastrointestinal cancers, liver diseases, and complications related to metabolic and infectious etiologies. Many gastrointestinal diseases follow a chronic or relapsing course and often present with nonspecific or fluctuating symptoms, making early diagnosis challenging. Delays in detection and treatment frequently result in disease progression, complications, impaired quality of life, and increased healthcare utilization.

Traditional models of gastrointestinal care are largely reactive and clinic centered. Diagnosis and monitoring rely on episodic clinical visits,

laboratory investigations, imaging studies, and invasive procedures such as endoscopy. While these approaches remain essential, they may fail to capture symptom variability, lifestyle influences, and disease dynamics occurring between visits. Patients often struggle to recognize early warning signs, adhere to complex treatment regimens, and manage symptoms in daily life. As a result, there is growing recognition of the need for more proactive, continuous, and patient-centered approaches to gastrointestinal care.

Artificial intelligence has emerged as a powerful enabler of this transformation. Artificial intelligence encompasses machine learning, deep learning, and advanced computational methods capable of analyzing large and complex datasets, identifying subtle patterns, and generating predictive insights. In gastroenterology, artificial intelligence can integrate diverse data sources, including clinical histories, laboratory biomarkers, endoscopic images, histopathology, microbiome profiles, wearable sensor data, and patient-reported outcomes. This integrative capacity supports a paradigm shift toward self-diagnosis, self-monitoring, and personalized medicine.

Artificial intelligence-driven self-diagnosis tools empower patients to recognize early signs of gastrointestinal disease and assess symptom

patterns outside clinical settings. Self-monitoring technologies enable continuous tracking of symptoms, dietary intake, physiological parameters, and behavioral factors that influence gastrointestinal health. Personalized medicine applications leverage artificial intelligence to tailor diagnostic strategies, prognostic assessments, and treatment plans to individual patients based on biological, clinical, and lifestyle characteristics. Together, these innovations promise earlier detection, improved disease control, enhanced patient engagement, and more efficient use of healthcare resources.

This chapter explores the role of artificial intelligence in self-diagnosis, self-monitoring, and personalized medicine in gastrointestinal diseases. It examines current applications, methodological advances, clinical implications, ethical considerations, and future directions, highlighting how intelligent systems can reshape gastrointestinal care by empowering patients while supporting clinicians with data-driven decision making.

Artificial Intelligence for Self-Diagnosis in Gastrointestinal Diseases

Self-diagnosis in gastrointestinal diseases has traditionally been limited by the heterogeneity of symptoms and the overlap between benign

and serious conditions. Symptoms such as abdominal pain, bloating, diarrhea, constipation, nausea, and weight changes are common across a wide range of gastrointestinal disorders and may fluctuate over time. Artificial intelligence offers new opportunities to support self-diagnosis by analyzing symptom patterns, risk factors, and contextual information in a systematic and personalized manner.

Artificial intelligence-based self-diagnosis systems typically rely on machine learning models trained on large datasets derived from electronic health records, symptom questionnaires, laboratory results, and clinical outcomes. These models can identify combinations of symptoms and risk factors associated with specific gastrointestinal conditions, such as inflammatory bowel disease, celiac disease, peptic ulcer disease, or colorectal cancer. By embedding such algorithms into patient-facing platforms, individuals can receive preliminary risk assessments and guidance on whether medical evaluation is warranted.

Mobile applications and web-based symptom assessment tools increasingly incorporate artificial intelligence-driven decision support. Users can enter detailed information regarding symptom onset, duration, severity, triggers, dietary habits, medication use, and family history. Machine learning algorithms analyze

these inputs to generate personalized risk estimates and suggest possible conditions. For example, artificial intelligence systems can help differentiate functional gastrointestinal disorders from organic diseases by recognizing symptom constellations and alarm features that warrant further investigation.

Artificial intelligence also supports self-diagnosis through analysis of home-based testing data. Advances in point-of-care diagnostics and connected devices allow patients to perform stool tests, breath tests, or blood sampling at home. Artificial intelligence algorithms can interpret results related to fecal calprotectin, occult blood, breath hydrogen levels, or inflammatory markers, providing early insight into potential gastrointestinal pathology. These tools can be particularly valuable for patients with chronic symptoms who require ongoing assessment to guide clinical decision making.

In liver diseases, artificial intelligence-based self-diagnosis tools can integrate laboratory trends, lifestyle factors such as alcohol intake, and metabolic risk profiles to identify individuals at risk of fatty liver disease or progressive fibrosis. Patients can receive alerts regarding abnormal patterns and be encouraged to seek evaluation before advanced liver damage develops.

Despite their potential benefits, artificial intelligence-driven self-diagnosis tools must be

used responsibly. False-positive results may cause anxiety and unnecessary testing, while false-negative results may delay diagnosis of serious conditions. Clear communication regarding limitations, appropriate thresholds for concern, and integration with clinician oversight are essential. Self-diagnosis tools should be viewed as educational and supportive resources that enhance patient awareness and engagement rather than substitutes for professional medical evaluation.

Artificial Intelligence for Self-Monitoring in Gastrointestinal Diseases

Self-monitoring plays a central role in the management of many gastrointestinal diseases, particularly chronic and relapsing conditions such as inflammatory bowel disease, irritable bowel syndrome, chronic liver disease, and functional dyspepsia. Disease activity and symptom burden can vary widely over time and are influenced by diet, stress, medication adherence, and environmental factors. Artificial intelligence enhances self-monitoring by enabling continuous data collection, pattern recognition, and personalized feedback.

Digital health platforms equipped with artificial intelligence allow patients to track symptoms, bowel habits, pain levels, dietary intake,

sleep, physical activity, and psychological stress. Machine learning models analyze longitudinal data to identify trends, detect early signs of disease flare or deterioration, and predict future symptom trajectories. For example, in inflammatory bowel disease, artificial intelligence algorithms can recognize subtle changes in symptom patterns or patient-reported outcomes that precede clinical relapse, enabling earlier intervention and treatment adjustment.

Wearable devices contribute valuable physiological data to gastrointestinal self-monitoring. Metrics such as heart rate variability, physical activity, sleep quality, and stress indicators provide indirect insights into disease status and overall well-being. Artificial intelligence models integrate these data with symptom reports and laboratory values to generate comprehensive assessments of disease activity. This approach supports a more holistic understanding of gastrointestinal health and enables proactive management strategies.

Dietary management is particularly important in gastrointestinal diseases. Artificial intelligence-powered nutrition tracking applications can analyze food intake, identify potential triggers, and estimate nutrient composition relevant to gastrointestinal health. By combining dietary data with symptom patterns, machine learning models can identify individualized dietary sensitivities

and provide tailored recommendations. This is especially valuable in conditions such as irritable bowel syndrome, where dietary triggers vary widely among individuals.

In chronic liver disease, self-monitoring supported by artificial intelligence can include tracking of weight, abdominal girth, medication adherence, and symptom progression. Predictive models can identify early signs of decompensation, such as fluid retention or hepatic encephalopathy, and prompt timely clinical evaluation. Such systems have the potential to reduce hospitalizations and improve patient outcomes through earlier intervention.

Artificial intelligence also facilitates remote monitoring in patients undergoing gastrointestinal cancer treatment or recovery after surgery. By analyzing patient-reported symptoms, physiological data, and treatment parameters, machine learning models can detect complications, assess recovery trajectories, and guide supportive care. This continuous monitoring supports patient safety while reducing the need for frequent in-person visits.

Successful implementation of artificial intelligence-driven self-monitoring depends on usability, patient engagement, and data quality. Systems must present information in an accessible and actionable manner, avoiding excessive alerts or complexity. Data privacy, interoperability with

clinical systems, and integration into routine care pathways remain critical challenges that must be addressed to ensure widespread adoption.

Artificial Intelligence for Personalized Medicine in Gastrointestinal Diseases

Personalized medicine aims to tailor prevention, diagnosis, and treatment strategies to the unique characteristics of each patient. In gastrointestinal diseases, where disease mechanisms, symptom expression, and treatment responses vary substantially, artificial intelligence provides powerful tools to enable individualized care.

Artificial intelligence-driven predictive models can estimate individual risk of disease onset, progression, complications, and treatment response. By integrating clinical variables, laboratory data, imaging findings, and patient-reported outcomes, machine learning algorithms generate personalized risk profiles that support clinical decision making. In inflammatory bowel disease, for example, predictive models can estimate the likelihood of disease flare, need for escalation of therapy, or risk of complications, enabling proactive and targeted management.

Pharmacological treatment in gastrointestinal diseases often involves complex decision making due to variability in drug response and risk of adverse effects. Artificial intelligence supports

personalized pharmacotherapy by predicting treatment efficacy, optimizing dosing, and identifying patients at risk of toxicity. Machine learning models analyze patient-specific factors such as disease phenotype, biomarker profiles, genetic variants, and comorbidities to guide selection of biologic agents, immunomodulators, or small molecule therapies.

Genomics and multi-omics integration represent a major frontier in personalized gastroenterology. Artificial intelligence enables analysis of genomic, transcriptomic, proteomic, metabolomic, and microbiome data to identify disease subtypes and pathogenic mechanisms. In inflammatory bowel disease, artificial intelligence-driven clustering approaches can reveal molecular phenotypes associated with different disease courses and treatment responses. This information supports precision therapy and improved clinical trial design.

The gut microbiome plays a central role in gastrointestinal health and disease. Artificial intelligence models can analyze complex microbiome datasets to identify patterns associated with disease states, symptom severity, and treatment outcomes. By integrating microbiome data with dietary information and clinical variables, personalized interventions such as dietary modification, probiotics, or microbiota-targeted therapies can be tailored to individual

patients.

In gastrointestinal oncology, artificial intelligence supports personalized medicine through risk stratification, treatment selection, and outcome prediction. Predictive models can estimate response to chemotherapy, immunotherapy, or targeted agents based on tumor characteristics and patient-specific factors. Artificial intelligence also aids in surveillance strategies by identifying patients at higher risk of recurrence who may benefit from closer monitoring.

Dynamic personalization is a key advantage of artificial intelligence. As new data are generated through self-monitoring and clinical encounters, predictive models can update risk estimates and treatment recommendations over time. This adaptive approach transforms gastrointestinal care from static protocols to responsive and individualized management strategies.

Artificial Intelligence in Endoscopic and Imaging Support for Personalized Care

Endoscopy and imaging are central to the diagnosis and management of gastrointestinal diseases. Artificial intelligence has made significant advances in automated image analysis, enhancing both diagnostic accuracy and personalized care. Deep learning algorithms can analyze endoscopic images in real time to detect

lesions, classify pathology, and assess disease severity.

Artificial intelligence-assisted endoscopy improves detection of colorectal polyps, early cancers, and subtle mucosal abnormalities that may be missed by human observers. By providing real-time feedback during procedures, these systems support earlier diagnosis and more complete lesion removal, reducing the risk of interval cancers. Personalized risk assessment can be enhanced by integrating endoscopic findings with patient-specific data.

In inflammatory bowel disease, artificial intelligence models can quantify endoscopic disease activity, assess mucosal healing, and predict response to therapy. Automated scoring systems reduce interobserver variability and provide objective measures that support personalized treatment decisions. Imaging modalities such as magnetic resonance enterography and computed tomography can also benefit from artificial intelligence-driven analysis, enabling precise assessment of disease extent and complications.

Histopathology is another area where artificial intelligence contributes to personalized gastrointestinal care. Machine learning models can analyze digital pathology slides to identify disease features, grade dysplasia, and predict prognosis. Integrating histological data with

clinical and molecular information supports more accurate risk stratification and individualized management.

Ethical, Clinical, and Practical Challenges

Despite its transformative potential, the application of artificial intelligence to self-diagnosis, self-monitoring, and personalized medicine in gastrointestinal diseases presents important ethical, clinical, and practical challenges. Data privacy and security are paramount, as artificial intelligence systems rely on large volumes of sensitive health information. Robust governance frameworks, encryption, and regulatory compliance are essential to protect patient confidentiality and maintain trust.

Algorithmic bias is a significant concern. If training datasets do not adequately represent diverse populations, artificial intelligence models may produce biased predictions that exacerbate health disparities. Ensuring diversity in data sources and continuous evaluation of model performance across demographic and clinical subgroups is critical.

Interpretability and transparency are particularly important in gastrointestinal care, where treatment decisions can have significant consequences. Highly complex models may achieve strong predictive performance but

offer limited insight into decision processes. Explainable artificial intelligence approaches that clarify model reasoning are increasingly important to support clinician confidence and informed patient engagement.

Clinical integration also poses challenges. Artificial intelligence tools must complement existing workflows and enhance, rather than burden, clinical practice. Successful implementation requires interoperability with electronic health records, clinician training, and clear delineation of responsibilities between patients and healthcare providers. Self-diagnosis and self-monitoring tools should empower patients while preserving clinician oversight and accountability.

Regulatory and reimbursement frameworks must evolve to support responsible adoption. Clear standards for validation, safety, and effectiveness are required, particularly for patient-facing applications. Demonstrating real-world clinical benefit through rigorous evaluation remains essential to justify widespread implementation.

Future Directions and Opportunities

The future of artificial intelligence in gastrointestinal diseases lies in deeper integration across self-diagnosis, self-monitoring, and personalized medicine. Advances in sensor technologies, mobile health platforms, and data

integration will expand the scope and accuracy of patient-generated data. Artificial intelligence models will increasingly incorporate behavioral, environmental, and social determinants of health to provide a more comprehensive understanding of gastrointestinal disease risk and management.

Digital twin concepts offer exciting possibilities for personalized gastrointestinal care. Virtual representations of individual patients could simulate disease progression, treatment responses, and lifestyle interventions, supporting highly personalized decision making. In inflammatory bowel disease or liver disease, digital twins could optimize treatment strategies and predict long-term outcomes under different scenarios.

Collaborative ecosystems involving patients, clinicians, data scientists, engineers, and policymakers will be essential to realize the full potential of artificial intelligence. Patient engagement and co-design of tools will improve usability and acceptance, while interdisciplinary collaboration will ensure clinical relevance, ethical integrity, and sustainability.

In conclusion, artificial intelligence represents a powerful enabler of patient-centered gastrointestinal care. By supporting early self-diagnosis, continuous self-monitoring, and truly personalized medicine, intelligent systems can help shift gastroenterology toward a proactive,

preventive, and precision-oriented model. While challenges remain, responsible and thoughtful integration of artificial intelligence holds substantial promise for improving outcomes, enhancing quality of life, and reducing the global burden of gastrointestinal diseases.

4- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN CARDIAC DISEASES

Background

Cardiovascular disease (CVD) ranks first as a cause of mortality and morbidity throughout the world. As stated, one out of three adults globally suffers from a type of CVD. Researchers estimate that by 2035, half of the population will suffer from CVDs.

Whereas CVDs were traditionally thought of as diseases affecting individuals over the age of 60, current prevalence estimates reflect an alarming and growing number of these life-threatening diseases in younger age groups, representing a critical public health warning that should be taken seriously.

This broad category encompasses pathologies of heart failure, cardiac muscle disorders, coronary artery disease, rheumatic diseases, and stroke, all of which affect the vascular supply to the heart, brain, and other vital organs. Common risk factors among patients include age, gender, smoking habits, obesity, hypertension, metabolic syndrome, blood pressure abnormalities, and abnormal lipid and total cholesterol levels. To overcome this challenge, early detection of CVD by

physicians will play a significant role in enhancing prevention strategies at an early stage.

Traditional diagnosis of CVD is often a long, expensive, and unpleasant process for the patient. It typically involves visiting a physician, usually followed by a physical examination. The diagnostic process is then pursued through a sequence of time-consuming steps, including blood tests and an electrocardiogram, often progressing to the use of advanced imaging modalities to achieve a precise diagnosis.

In recent times, the healthcare sector has been deeply engaged in a technological shift. The adoption of wearable technologies and eHealth strategies accelerated after the Covid-19 pandemic. Patients used these strategies to monitor their own health and reduce in-person visits. Healthcare based on wearable technology improves the care of patients with cardiovascular disease.

Smartwatches are the most widely adopted devices among wearable technologies. These devices continuously monitor heart rate and alert the user if an abnormally low rate, bradycardia, or an excessively high rate, tachycardia, is detected during periods of rest. By tracking daily activities, sleep patterns, and calorie expenditure, smartwatches assist users in maintaining a healthier lifestyle, which directly contributes to the primary prevention of CVD. For patients

who have a pre-existing cardiac condition, these devices facilitate remote monitoring and aid physicians in making informed adjustments to medication protocols.

Mobile health, or mHealth, is used for the self-management of CVDs, and approximately 500 million patients use this technology to support their self-healthcare. Smartwatches are excellent monitoring tools for screening and promoting healthy lifestyles, but they must not replace definitive medical diagnosis and clinical evaluations.

Personalized medicine, which fundamentally seeks to customize care based on individual patient traits and remains a long-term goal of the medical community, extends medical sciences by utilizing clinical decisions to predict disease onset, ensure diagnostic accuracy, and formulate optimal therapeutic strategies. Consequently, the integration of artificial intelligence is indispensable for realizing these aims, profoundly enhancing the precision of identifying illnesses, administering drugs, and accelerating pharmaceutical advancements across the healthcare sector.

There are a number of algorithms from machine learning and artificial intelligence that are used in the medical field, and specifically in personalized medicine, to analyze complex datasets of radiological, genetic, and laboratory

parameters and generate predictions. Utilizing artificial intelligence in personalized medicine will revolutionize cardiovascular healthcare. Therefore, artificial intelligence algorithms can potentially identify cryptic and genotypic structures to be used in advanced patient care, such as diagnosing disease at an early stage, predicting treatment response, estimating the risk of developing disease in the future, determining prognosis, and evaluating other outcomes in individual patients.

The challenge faced by personalized medicine stems from the need to integrate and utilize a massive volume of complex information and data elements that can influence a specific patient's disease prognosis or outcome. These factors constitute a vast amount of intricate data that is simply too large for human analysis. Previous studies on the decision-making processes of medical professionals have demonstrated that clinicians typically base their decisions on focusing on five to seven key facts about a patient's situation.

The human brain, in real clinical situations, cannot evaluate all complex variables at once. For speed and efficiency, it must concentrate on a limited number of facts and interpret the remainder through experience, a process sometimes referred to as Gestalt or wholistic perception. It is therefore of utmost

importance to introduce artificial intelligence, because physicians can only process a few key facts at the same time, whereas artificial intelligence can integrate and analyze all available data from genomic, radiological, and clinical sources simultaneously due to its computational capabilities. This potential allows artificial intelligence to discover patterns and correlations well beyond human cognitive processing capacity in a busy clinical setting. Thus, artificial intelligence bridges the gap between the volume of data and the limited capacity of human decision-making.

Artificial intelligence systems are now capable of processing large scale, multimodal datasets, including electrocardiograms, cardiac imaging, wearable sensor data, genomic information, and electronic health records, and can identify subtle patterns that frequently escape conventional analytical methods. Recent cardiology focused evidence has demonstrated that artificial intelligence algorithms applied to electrocardiography, echocardiography, computed tomography, magnetic resonance imaging, and genomic data can significantly improve diagnostic accuracy, phenotyping, and risk stratification. Importantly, artificial intelligence in cardiac care is increasingly extending beyond the confines of the hospital environment and into patient centered settings, allowing individuals to engage

more actively in the assessment and management of their cardiovascular health.

In the domain of self-diagnosis and early detection, wearable sensors, smartphones, and smartwatch based electrocardiography and photoplethysmography technologies enable individuals to perform preliminary cardiac assessments outside of clinical settings. Artificial intelligence enabled electrocardiographic screening tools can identify arrhythmias such as atrial fibrillation and may detect markers of reduced ejection fraction with sensitivity and specificity that surpass many traditional screening approaches. These tools facilitate earlier identification of structural and electrical abnormalities, thereby adding an important layer to preventive cardiology and supporting timely referral for professional evaluation.

In the area of self-monitoring and disease management, continuous remote monitoring through wearable devices, implantable technologies, and telehealth platforms enables near real time capture of physiological and behavioral data. Artificial intelligence models can analyze these data streams to predict decompensation in heart failure, identify silent ischemic events, monitor medication adherence, and support simulations of disease trajectories through digital twin based frameworks. In cardiac imaging and monitoring, artificial intelligence

platforms have demonstrated the ability to reduce image acquisition time, integrate multimodal inputs, and improve clinical workflow efficiency. This continuous flow of data supports a dynamic and patient centric model of care in which individuals are no longer passive recipients but active participants in managing their cardiac health.

Personalized and precision medicine in cardiology is also increasingly driven by artificial intelligence. With access to genomic, proteomic, metabolomic, imaging, and lifestyle data, artificial intelligence based stratification models can tailor diagnostic strategies and therapeutic interventions to individual patient profiles. Concepts such as individualized cardiac risk prediction, personalized modeling of drug response, and optimization of lifestyle interventions are becoming increasingly feasible. These approaches reflect a shift away from population based treatment strategies toward care pathways that account for biological, behavioral, and environmental heterogeneity among patients.

Despite these advances, the adoption of artificial intelligence in self-diagnosis, self-monitoring, and personalized cardiac care presents several critical challenges. These include concerns related to data privacy and security, algorithmic bias, limited transparency of complex models, interoperability across healthcare systems, the

lack of large scale randomized clinical trials, and questions regarding equity and generalizability across diverse populations. In the context of self-diagnosis tools in particular, false positive results may lead to patient anxiety and unnecessary downstream testing, while false negative results may provide misleading reassurance. Ensuring appropriate clinician oversight, rigorous external validation, and the implementation of transparent and explainable artificial intelligence frameworks is therefore essential.

Looking forward, the future of cardiovascular care lies in the seamless integration of artificial intelligence enabled patient facing tools, clinician decision support systems, and healthcare infrastructure that supports remote monitoring, predictive analytics, and individualized care delivery. The field is moving toward a model that can be described as augmented cardiology, in which human clinical expertise is enhanced by intelligent systems and patients are recognized as empowered partners in their care. As cardiologists and healthcare innovators, we stand at the threshold of a new era in which cardiovascular medicine becomes increasingly predictive, preventive, and personalized.

***The Transformative Role
of Artificial Intelligence
in Cardiac Care***

The convergence of large, complex, and

heterogeneous datasets in cardiovascular medicine, ranging from electronic health records and advanced cardiac imaging to genomics, proteomics, and real time physiological data collected through wearable sensors, has created unprecedented opportunities for artificial intelligence driven analytics. Artificial intelligence algorithms excel at identifying subtle nonlinear patterns and relationships within this vast data space, patterns that are often undetectable by human interpretation or conventional statistical approaches. This distinctive capability underpins the transformative potential of artificial intelligence across the entire spectrum of cardiac care.

More specifically, artificial intelligence is poised to redefine the concepts of self-diagnosis and self-monitoring for patients with cardiovascular disease. Artificial intelligence systems are able to integrate data streams from personal health records and advanced remote monitoring devices, enabling continuous analysis of inputs such as electrocardiographic signals, heart rate variability, blood pressure measurements, and physical activity levels. These capabilities facilitate the development of intelligent, patient facing applications that can provide early warning signals of impending cardiac events or disease exacerbations well before symptoms become clinically apparent or emergency care

is required. For instance, an irregular heart rhythm detected by a wearable device may be immediately identified by a machine learning model, prompting a self-diagnostic assessment and advising timely clinical follow up. This shift empowers patients to play an active role in managing their condition, moving aspects of care from the clinical setting into the home environment and promoting greater adherence to prescribed treatments and lifestyle modifications.

Pivoting to Personalized Medicine

Beyond self-monitoring, the most profound promise of artificial intelligence in cardiology lies in the realization of personalized medicine. Cardiovascular diseases are inherently heterogeneous, and patients sharing the same clinical diagnosis may differ substantially in their underlying molecular mechanisms, risk profiles, and responses to identical therapeutic regimens. Artificial intelligence enables personalized medicine by developing highly accurate risk stratification models that extend well beyond traditional clinical risk scores. These models integrate clinical data with genomic information and lifestyle factors to predict individual disease trajectories, recurrence risks, and the likelihood of favorable or adverse responses to specific interventions, such as certain classes of antihypertensive medications or the implantation of cardiac devices.

This level of precision in diagnosis and prognosis allows clinicians to move beyond a one size fits all approach to care. Artificial intelligence can support the selection of the most appropriate, individualized treatment strategy for each patient at a given stage of disease, with the aim of minimizing adverse effects while maximizing therapeutic benefit. Furthermore, artificial intelligence driven systems can continuously refine treatment recommendations over time through feedback loops enabled by remote monitoring technologies. This ongoing optimization transforms patient management into a dynamic and proactive process that adapts to changes in the patient's real time physiological and behavioral status, ultimately supporting improved long term outcomes and more efficient delivery of cardiovascular care.

Artificial Intelligence for Self-Monitoring in Cardiac Diseases

Self-monitoring is a cornerstone of effective management for many cardiac diseases, particularly chronic conditions such as heart failure, hypertension, arrhythmias, and ischemic heart disease. Disease progression and clinical stability are influenced by dynamic factors including fluid balance, blood pressure, physical activity, medication adherence, diet, and stress. Artificial intelligence enhances self-monitoring by enabling continuous data collection, trend

analysis, and predictive insights.

Wearable devices generate large volumes of real-time physiological data relevant to cardiac health. These include heart rate, rhythm, activity levels, sleep patterns, oxygen saturation, and sometimes blood pressure. Artificial intelligence algorithms analyze these continuous data streams to identify deviations from individual baselines, detect early signs of deterioration, and predict adverse events. For example, machine learning models can recognize patterns of reduced activity, rising heart rate, and sleep disturbance that precede heart failure decompensation, enabling early intervention to prevent hospitalization.

Home blood pressure monitoring is particularly important in cardiac disease management. Artificial intelligence-powered platforms integrate blood pressure readings with contextual information such as medication timing, dietary sodium intake, physical activity, and circadian variation. These systems can identify masked hypertension, poor control, or excessive variability, providing personalized feedback to patients and clinicians. Continuous self-monitoring supported by artificial intelligence allows more precise titration of antihypertensive therapy and improved long-term cardiovascular risk reduction.

Artificial intelligence also supports self-monitoring in patients with arrhythmias.

Continuous rhythm monitoring through wearables or implantable devices generates extensive datasets that are difficult to interpret manually. Machine learning models can classify arrhythmias, quantify burden, and predict progression or complications. For patients with atrial fibrillation, artificial intelligence-driven monitoring can guide anticoagulation decisions, rhythm control strategies, and follow-up intensity.

In patients with implanted cardiac devices such as pacemakers, defibrillators, and cardiac resynchronization therapy systems, artificial intelligence enhances remote monitoring by analyzing device-generated data. Predictive models can detect early signs of lead malfunction, battery depletion, or worsening cardiac function. This proactive approach improves patient safety, reduces unnecessary clinic visits, and supports timely intervention.

Lifestyle factors play a crucial role in cardiac health, and artificial intelligence supports self-monitoring in this domain as well. Digital platforms can analyze physical activity, diet, sleep, and stress data to provide personalized recommendations and feedback. By integrating behavioral data with physiological signals, machine learning models support comprehensive self-management strategies that address both medical and lifestyle components of cardiac

disease.

The success of artificial intelligence-driven self-monitoring depends on patient engagement, usability, and trust. Systems must present information in an understandable and actionable manner, avoiding information overload or excessive alerts. Data privacy, interoperability with clinical systems, and integration into routine care pathways remain essential considerations for widespread adoption.

Artificial Intelligence in Cardiac Imaging and Diagnostics

Cardiac imaging plays a central role in the diagnosis and management of cardiovascular disease. Artificial intelligence has significantly advanced automated image analysis, improving diagnostic accuracy, efficiency, and personalization. Deep learning algorithms can analyze echocardiography, computed tomography, magnetic resonance imaging, and nuclear imaging data to detect structural abnormalities, quantify function, and predict outcomes.

Artificial intelligence-assisted echocardiography enables automated measurement of chamber size, ventricular function, valvular disease severity, and myocardial strain. These tools reduce interobserver variability and improve consistency, supporting personalized assessment and monitoring. In cardiac magnetic resonance

imaging, artificial intelligence models can identify tissue characteristics such as fibrosis and inflammation, which are important for risk stratification and treatment planning.

Electrocardiography analysis has also been transformed by artificial intelligence. Deep learning models can detect subtle patterns associated with structural heart disease, electrolyte abnormalities, and genetic conditions from standard electrocardiograms. These insights support early diagnosis and personalized risk assessment.

Integration of imaging data with clinical, genomic, and wearable sensor information further enhances personalized care. Artificial intelligence models that combine multimodal data provide comprehensive assessments of cardiac structure, function, and risk, supporting individualized management strategies.

Ethical, Clinical, and Practical Challenges

Despite its transformative potential, the application of artificial intelligence to self-diagnosis, self-monitoring, and personalized medicine in cardiac diseases presents important ethical, clinical, and practical challenges. Data privacy and security are paramount, as artificial intelligence systems rely on large volumes of sensitive health data. Robust governance

frameworks, encryption, and regulatory compliance are essential to protect patient confidentiality and maintain trust.

Algorithmic bias is a significant concern. If training datasets do not adequately represent diverse populations, artificial intelligence models may produce biased predictions that exacerbate health disparities. Ensuring diversity in data sources and continuous evaluation of model performance across demographic and clinical subgroups is critical.

Interpretability and transparency are particularly important in cardiology, where treatment decisions carry significant consequences. Highly complex models may achieve strong predictive performance but offer limited insight into decision processes. Explainable artificial intelligence approaches that clarify model reasoning are increasingly important to support clinician confidence and informed patient engagement.

Clinical integration also poses challenges. Artificial intelligence tools must complement existing workflows and enhance, rather than burden, clinical practice. Successful implementation requires interoperability with electronic health records, clinician training, and clear delineation of responsibilities between patients and healthcare providers. Self-diagnosis and self-monitoring tools should empower

patients while preserving clinician oversight and accountability.

Regulatory and reimbursement frameworks must evolve to support responsible adoption. Clear standards for validation, safety, and effectiveness are required, particularly for patient-facing applications. Demonstrating real-world clinical benefit through rigorous evaluation remains essential to justify widespread implementation.

Future Directions and Opportunities

The future of artificial intelligence in cardiac diseases lies in deeper integration across self-diagnosis, self-monitoring, and personalized medicine. Advances in sensor technologies, mobile health platforms, and data integration will expand the scope and accuracy of patient-generated data. Artificial intelligence models will increasingly incorporate behavioral, environmental, and social determinants of health to provide a more comprehensive understanding of cardiovascular risk and management.

Digital twin concepts offer exciting possibilities for personalized cardiac care. Virtual representations of individual patients could simulate disease progression, treatment responses, and lifestyle interventions, supporting highly personalized decision-making. In heart failure and arrhythmia management, digital twins could optimize therapy selection and predict long-

term outcomes under different scenarios.

Collaborative ecosystems involving patients, clinicians, data scientists, engineers, and policymakers will be essential to realize the full potential of artificial intelligence. Patient engagement and co-design of tools will improve usability and acceptance, while interdisciplinary collaboration will ensure clinical relevance, ethical integrity, and sustainability.

In conclusion, artificial intelligence represents a powerful enabler of patient-centered cardiac care. By supporting early self-diagnosis, continuous self-monitoring, and truly personalized medicine, intelligent systems can help shift cardiology toward a proactive, preventive, and precision-oriented model. While challenges remain, responsible and thoughtful integration of artificial intelligence holds substantial promise for improving outcomes, enhancing quality of life, and reducing the global burden of cardiac diseases.

5- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN DERMATOLOGICAL DISEASES

Background

Considering that the Global Burden of Disease Study 2021 reported that skin and subcutaneous diseases resulted in millions of disability adjusted life years, these diseases are among the most prominent causes of disability worldwide. Computer aided diagnosis has a substantial impact on improving access to dermatologic care, particularly in the context of the limited number of practicing dermatologists and the long waiting times commonly experienced for specialist consultations. Moreover, the ability to assess disease severity based on diagnostic outputs can directly inform treatment decisions and provide meaningful support for patient self-management strategies.

Meta analyses have demonstrated that artificial intelligence assisted systems, including deep learning based approaches, can achieve diagnostic accuracy comparable to that of expert dermatologists in the identification of severe skin diseases. Although artificial intelligence algorithms have, in some controlled and

constrained settings, outperformed experienced dermatologists in image classification tasks, these systems remain highly sensitive to shifts in data distribution. Consequently, collaborative diagnostic approaches that combine artificial intelligence with human expertise have the potential to improve overall performance by compensating for the limitations inherent to both clinicians and automated systems.

To address persistent inequities in healthcare access, particularly among patients who are at increased risk of worse outcomes from skin diseases, image based artificial intelligence enables continuous disease monitoring, supports early clinical intervention, and facilitates objective assessment of disease severity in dermatologic conditions that affect a substantial proportion of the global population. However, recent studies have highlighted notable limitations related to diversity and accuracy in automated image analysis systems. These limitations are largely attributable to incomplete demographic and clinical information about study participants, as well as variability in evaluator assessments, which collectively reduce the generalizability and applicability of deep learning models in real world settings.

Artificial intelligence, together with the increasing availability of multimodal data, enables the construction of comprehensive patient

profiles and is driving a significant transformation toward personalized treatment strategies. Machine learning applied to multi omics data has revealed distinct subgroups of inflammatory skin diseases, which may correspond to specific biologic pathways and therapeutic targets. These insights offer the potential to improve monitoring of disease progression and clinical outcomes through tailored and individualized treatment approaches.

The implementation of these advanced methodologies within routine clinical workflows requires large scale longitudinal studies, the inclusion of diverse patient populations, integration across multiple imaging modalities, and the development of unified and transparent analytical frameworks. Such requirements are essential to enable comprehensive patient level analysis, as demonstrated by recent multimodal vision models developed for clinical dermatology. At the same time, regulatory bodies face considerable challenges in establishing standardized and tailored frameworks for monitoring the real world performance of artificial intelligence and machine learning based software as medical devices. These challenges complicate the rigorous assessment of prospective validation studies and the assurance of consistent and reliable clinical efficacy.

Active participation in regulatory processes

related to artificial intelligence augmented dermatology systems is therefore critical, particularly for frontline clinicians and early career physicians. Their engagement can support the integration of standardized human and artificial intelligence interactions and contribute to the optimization of algorithms that are better aligned with accurate, equitable, and patient centered treatment plans. Future research should also explore alternative artificial intelligence architectures with the aim of enhancing explainability, improving diagnostic and prognostic performance, and mitigating existing limitations, including high computational and performance related costs.

Artificial Intelligence for Self-Diagnosis in Dermatological Diseases

Self-diagnosis in dermatology has long been influenced by the visual nature of skin disease, as patients often notice lesions, rashes, or pigmentary changes before seeking medical attention. However, distinguishing benign conditions from serious pathology based on appearance alone is difficult, even for trained clinicians. Artificial intelligence offers powerful tools to support self-diagnosis by analyzing images and symptom data in a systematic and personalized manner.

Artificial intelligence-based self-diagnosis systems primarily rely on deep learning models, particularly convolutional neural networks, trained on large datasets of labeled skin images. These models can learn to recognize patterns associated with various dermatological conditions, including melanoma, basal cell carcinoma, squamous cell carcinoma, acne, psoriasis, eczema, fungal infections, and inflammatory dermatoses. When embedded in patient-facing applications, such systems allow individuals to capture images of skin lesions using smartphones and receive preliminary assessments regarding the likelihood of specific conditions.

Mobile applications incorporating artificial intelligence-driven image analysis have demonstrated promising performance in classifying skin lesions and identifying high-risk features. For skin cancer, artificial intelligence systems can analyze lesion asymmetry, border irregularity, color variation, and structural patterns to estimate malignancy risk. Such tools can encourage earlier presentation for suspicious lesions, potentially improving outcomes through timely diagnosis and treatment. In benign conditions, self-diagnosis tools may provide reassurance and guidance on appropriate self-care or over-the-counter treatments.

Beyond image analysis, artificial intelligence

supports self-diagnosis through symptom-based assessment tools. Patients can input information about itch severity, pain, lesion distribution, duration, triggers, and associated systemic symptoms. Machine learning models analyze these inputs in combination with demographic and risk factor data to generate personalized differential diagnoses and recommendations. This approach is particularly useful for inflammatory and allergic skin diseases, where symptom patterns and triggers play a crucial role.

Artificial intelligence-based self-diagnosis tools also have value in underserved and remote settings, where access to dermatologists is limited. By providing preliminary assessments and triage recommendations, these systems can help prioritize referrals and reduce delays in care. In global health contexts, self-diagnosis platforms may contribute to earlier detection of neglected tropical skin diseases and infectious dermatoses.

Despite their potential benefits, artificial intelligence-driven self-diagnosis tools must be used with caution. False-positive results may lead to anxiety, unnecessary medical visits, or overtreatment, while false-negative results may delay diagnosis of serious conditions. Image quality, lighting conditions, skin tone diversity, and user technique can significantly influence algorithm performance. Clear communication regarding limitations, appropriate thresholds

for concern, and integration with professional medical evaluation are essential. Self-diagnosis tools should be positioned as supportive aids that enhance awareness and engagement rather than replacements for clinical diagnosis.

Artificial Intelligence for Self-Monitoring in Dermatological Diseases

Self-monitoring is a critical component of managing many dermatological diseases, particularly chronic, relapsing, or progressive conditions such as psoriasis, atopic dermatitis, acne, hidradenitis suppurativa, and vitiligo. Disease severity, symptom burden, and treatment response often fluctuate over time and are influenced by environmental factors, stress, lifestyle, and adherence to therapy. Artificial intelligence enhances self-monitoring by enabling systematic tracking of skin changes and translating longitudinal data into meaningful insights.

Artificial intelligence-powered digital platforms allow patients to document skin lesions, rashes, or treatment response through serial photographs captured at home. Machine learning algorithms analyze these images to quantify changes in lesion size, color, texture, and distribution over time. In conditions such as psoriasis, artificial intelligence models can estimate body surface

area involvement, erythema intensity, and scaling severity, providing objective measures of disease activity. This enables patients and clinicians to monitor disease progression and treatment efficacy more accurately than subjective self-report alone.

Symptom tracking applications further support self-monitoring by allowing patients to record itch intensity, pain, sleep disturbance, and quality of life measures. Artificial intelligence algorithms analyze temporal patterns in these data to identify triggers, predict flares, and assess treatment response. For example, in atopic dermatitis, machine learning models can integrate symptom reports with environmental data such as temperature, humidity, and allergen exposure to identify individualized flare predictors.

Wearable sensors and connected devices are increasingly contributing to dermatological self-monitoring. Although the skin itself is the primary organ of interest, physiological signals such as sleep quality, stress levels, and physical activity can influence inflammatory skin diseases. Artificial intelligence models integrate wearable-derived data with skin-specific information to provide a more holistic understanding of disease dynamics. This approach supports proactive management strategies that address both cutaneous and systemic factors.

Self-monitoring is also valuable in the follow-up

of skin cancer and precancerous lesions. Artificial intelligence-assisted platforms can help patients monitor surgical sites, scars, or previously identified lesions for signs of recurrence or new lesion development. Automated analysis of serial images can detect subtle changes that warrant clinical evaluation, supporting early intervention and ongoing surveillance.

In cosmetic dermatology and pigmentary disorders, artificial intelligence-based self-monitoring tools can track changes in pigmentation, scarring, or texture, enabling personalized assessment of treatment response. This is particularly relevant for long-term therapies where gradual improvement may be difficult to appreciate without objective analysis.

The effectiveness of artificial intelligence-driven self-monitoring depends on usability, patient engagement, and data quality. Systems must be intuitive, minimize user burden, and provide actionable feedback without overwhelming patients. Data privacy, secure storage of images, and integration with clinical systems are essential considerations to ensure trust and widespread adoption.

Artificial Intelligence for Personalized Medicine in Dermatological Diseases

Personalized medicine aims to tailor prevention,

diagnosis, and treatment strategies to the unique characteristics of each patient. In dermatology, disease heterogeneity is substantial, with variability in genetic predisposition, immune pathways, environmental triggers, and treatment response. Artificial intelligence provides powerful tools to operationalize personalized care in dermatological diseases.

Artificial intelligence-driven predictive models can estimate individual risk of disease onset, severity, progression, and complications. By integrating clinical features, demographic variables, lifestyle factors, and patient-reported outcomes, machine learning algorithms generate personalized risk profiles that support targeted screening and preventive strategies. In skin cancer, artificial intelligence models can stratify individuals based on risk and guide personalized surveillance recommendations.

Treatment selection in dermatology is often challenging due to variable response and potential adverse effects. Artificial intelligence supports personalized therapy by predicting treatment response and optimizing therapeutic choices. In psoriasis and other inflammatory dermatoses, machine learning models can analyze clinical characteristics, biomarker profiles, and treatment history to predict response to biologic agents, systemic therapies, or topical treatments. This approach reduces trial-and-error prescribing and

improves treatment efficiency.

Genomics and multi-omics integration represent an important frontier in personalized dermatology. Artificial intelligence enables analysis of genomic variants, transcriptomic signatures, proteomic profiles, and microbiome data to identify disease subtypes and pathogenic mechanisms. In conditions such as psoriasis, atopic dermatitis, and melanoma, artificial intelligence-driven clustering approaches can reveal molecular phenotypes associated with distinct clinical outcomes and therapeutic responses. These insights support precision therapy and more rational clinical trial design.

The skin microbiome plays a significant role in dermatological health and disease. Artificial intelligence models can analyze complex microbiome datasets to identify patterns associated with disease activity, treatment response, and symptom severity. By integrating microbiome data with clinical and environmental information, personalized interventions such as targeted skincare regimens or microbiome-modulating therapies can be developed.

Artificial intelligence also supports personalized dosing, treatment scheduling, and monitoring strategies. By continuously integrating self-monitoring data, predictive models can adapt treatment plans in real time, adjusting intensity or frequency based on individual response.

This dynamic personalization transforms dermatological care from static protocols to responsive, patient-specific management.

Artificial Intelligence in Dermatopathology and Imaging

Dermatopathology and imaging are central to accurate diagnosis and management of skin diseases. Artificial intelligence has significantly advanced automated image analysis in these domains, improving diagnostic accuracy, efficiency, and consistency. Deep learning algorithms can analyze dermoscopic images, clinical photographs, and histopathological slides to identify disease-specific features.

Artificial intelligence-assisted dermoscopy enhances detection of melanoma and other skin cancers by identifying subtle patterns not easily recognized by the human eye. These systems can provide decision support during clinical evaluation and improve diagnostic confidence. In histopathology, machine learning models can analyze digitized biopsy slides to classify tumors, grade dysplasia, and predict prognosis. Integrating histological features with clinical and molecular data supports personalized risk assessment and treatment planning.

Artificial intelligence also facilitates teledermatology by enabling remote image analysis and triage. This is particularly valuable

in regions with limited access to dermatologists. Automated image assessment can prioritize high-risk cases and support efficient use of specialist resources.

Ethical, Clinical, and Practical Challenges

Despite its transformative potential, the application of artificial intelligence to self-diagnosis, self-monitoring, and personalized medicine in dermatological diseases raises important ethical, clinical, and practical challenges. Data privacy and security are paramount, as dermatological images and health information are highly sensitive. Robust safeguards, transparent data governance, and regulatory compliance are essential to protect patient confidentiality.

Algorithmic bias is a significant concern in dermatology. Many artificial intelligence models have been trained predominantly on images from lighter skin tones, leading to reduced performance in individuals with darker skin. Addressing this requires diverse and representative training datasets, continuous evaluation, and deliberate efforts to ensure equity in algorithm development and deployment.

Interpretability and transparency are also critical. Highly complex models may achieve strong performance but offer limited insight

into decision processes. Explainable artificial intelligence approaches that clarify model reasoning are important to support clinician trust and informed patient engagement.

Clinical integration presents additional challenges. Artificial intelligence tools must complement existing workflows and enhance, rather than burden, dermatological practice. Successful implementation requires interoperability with electronic health records, clinician training, and clear delineation of roles between patients and healthcare providers. Self-diagnosis and self-monitoring tools should empower patients while preserving clinician oversight and accountability.

Regulatory and reimbursement frameworks must evolve to support responsible adoption. Clear standards for validation, safety, and effectiveness are needed, particularly for patient-facing applications. Demonstrating real-world clinical benefit through rigorous studies remains essential.

Future Directions and Opportunities

The future of artificial intelligence in dermatological diseases lies in deeper integration across self-diagnosis, self-monitoring, and personalized medicine. Advances in mobile imaging, sensor technologies, and data integration will expand the scope

and accuracy of patient-generated data. Artificial intelligence models will increasingly incorporate environmental, behavioral, and social determinants of health to provide a more comprehensive understanding of skin disease risk and management.

Digital twin concepts offer exciting possibilities for dermatology. Virtual representations of individual patients could simulate disease progression, treatment response, and lifestyle interventions, supporting highly personalized decision making. In chronic inflammatory skin diseases, digital twins could optimize long-term management strategies and predict outcomes under different therapeutic scenarios.

Collaborative ecosystems involving patients, dermatologists, data scientists, engineers, and policymakers will be essential to realize the full potential of artificial intelligence. Patient engagement and co-design of tools will improve usability and acceptance, while interdisciplinary collaboration will ensure clinical relevance, ethical integrity, and sustainability.

In conclusion, artificial intelligence represents a powerful enabler of patient-centered dermatological care. By supporting early self-diagnosis, continuous self-monitoring, and truly personalized medicine, intelligent systems can help shift dermatology toward a proactive, preventive, and precision-oriented model. While

challenges remain, responsible and thoughtful integration of artificial intelligence holds substantial promise for improving outcomes, enhancing quality of life, and reducing the global burden of dermatological diseases.

6- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN OPHTHALMOLOGICAL DISEASES

Background

Artificial intelligence has emerged as a transformative technology in ophthalmology, enabling the automation of diagnostic processes, continuous self-monitoring, and the development of personalized therapeutic strategies. By leveraging advanced algorithms in machine learning and deep learning, artificial intelligence systems can analyze high dimensional ocular data, including fundus photographs, optical coherence tomography scans, and visual field tests, with accuracy that is comparable to, and in some settings may exceed, that of human experts. These capabilities are reshaping preventive eye care, empowering patients to participate actively in their own health management, and supporting the optimization of individualized treatment plans.

The integration of artificial intelligence into ophthalmology has emerged as one of the most dynamic transformations in modern eye care. Due to the field's inherent reliance on detailed visual information, ophthalmology provides an

ideal environment for the application of advanced computational models capable of analyzing large volumes of imaging data with high precision. These intelligent systems are reshaping both diagnostic and therapeutic practices, introducing novel approaches for early disease detection, long term patient monitoring, and individually tailored treatment planning. Artificial intelligence is no longer considered a supplementary analytical tool; rather, it is increasingly becoming an integral component of routine clinical workflows, supporting faster decision making and reducing human variability in image interpretation. This chapter explores three major domains in which artificial intelligence has generated substantial advances, including self diagnosis, improvements in diagnostic accuracy and screening, remote management of chronic eye diseases, and the development of personalized therapeutic models.

Diagnostic Applications and Screening Enhancements

Artificial intelligence driven diagnostic systems have significantly enhanced the precision and efficiency of ocular disease detection. Deep learning algorithms, especially convolutional neural networks, have demonstrated strong performance in interpreting retinal images and identifying subtle pathological features that may be overlooked by human observers. In diabetic retinopathy screening, automated analysis of

fundus photographs can reliably detect lesions such as microaneurysms and retinal hemorrhages, achieving diagnostic outcomes comparable to those of expert clinicians. Similarly, machine learning models trained on optic nerve head images are capable of identifying glaucomatous changes by quantifying optic disc cupping and retinal nerve fiber layer thinning, providing clinicians with objective measurements that support clinical decision making.

Advances in artificial intelligence assisted interpretation of optical coherence tomography scans have enabled accurate detection of retinal layer abnormalities, intraretinal fluid accumulation, and other markers of disease progression. These automated systems improve diagnostic consistency and accelerate the identification of sight threatening conditions, including macular edema and age related macular degeneration. Large scale implementation of these technologies in community based and hospital screening programs has been associated with improved detection rates and more efficient referral pathways, contributing to earlier intervention and a reduction in preventable vision loss.

**Artificial Intelligence for
Self-Monitoring and Chronic
Disease Management**

Effective management of chronic ocular diseases, such as diabetic retinopathy and macular degeneration, requires continuous observation rather than reliance on episodic clinic visits. Artificial intelligence has played a central role in facilitating this transition toward ongoing, patient centered monitoring. With the development of portable retinal imaging devices, patients are increasingly able to capture high quality fundus images at home and upload them to cloud based artificial intelligence platforms for automated assessment. These systems compare sequential images, identify subtle disease progression, and generate alerts for healthcare providers when clinically meaningful changes are detected.

Similarly, patients with macular degeneration can perform standardized visual function tests through digital interfaces, producing data that are analyzed by predictive algorithms designed to recognize early indicators of deterioration. These data driven monitoring frameworks allow clinicians to make informed and timely decisions, adjust treatment intervals, and individualize follow up schedules based on disease dynamics. This approach also improves accessibility to care, particularly for elderly individuals or patients with limited mobility, by reducing unnecessary clinical visits and focusing in person consultations on periods of active disease

progression. Through these innovations, artificial intelligence is redefining chronic ophthalmic care by enhancing continuity, efficiency, and cost effectiveness.

Continuous self-monitoring is essential for chronic ophthalmic conditions, especially glaucoma and diabetic macular edema, where disease progression may be gradual and often remains asymptomatic until late stages. Artificial intelligence powered mobile applications and home based monitoring devices can analyze visual function tests, retinal images, and intraocular pressure measurements to identify subtle temporal changes over time. Machine learning models designed for longitudinal trend analysis facilitate early recognition of disease progression and can prompt timely therapeutic adjustments. Integration with wearable sensors and Internet of Things technologies can further enhance remote monitoring by enabling real time data capture and transmission to clinicians, thereby supporting a more patient centered approach to long term disease management.

Artificial Intelligence for Self-Diagnosis

Artificial intelligence driven self-diagnosis tools, often integrated into smartphone based platforms or portable imaging devices, allow individuals to perform preliminary ocular assessments without

requiring immediate specialist consultation. Convolutional neural networks trained on large annotated datasets have demonstrated strong performance in detecting diabetic retinopathy, age related macular degeneration, and glaucoma from fundus images. Autonomous artificial intelligence systems used for diabetic retinopathy screening have received regulatory approval for point of care diagnostics in primary care settings. These algorithms support rapid triage by identifying suspected pathology and directing patients toward ophthalmologists for confirmatory evaluation, which can improve accessibility and reduce diagnostic delays, particularly in underserved populations.

Artificial Intelligence for Personalized Medicine

The integration of artificial intelligence with multi omics data, imaging biomarkers, and clinical records is advancing precision ophthalmology by tailoring prevention and treatment strategies to individual patient profiles. Predictive modeling using deep learning architectures can estimate therapeutic response to anti VEGF agents in age related macular degeneration or diabetic macular edema, supporting personalized dosing schedules and treatment intervals. Similarly, artificial intelligence based risk stratification models can identify patients who are more likely to experience

rapid glaucoma progression or postoperative complications. By combining imaging phenotypes with genetic and metabolic data, artificial intelligence supports the development of individualized risk assessment tools and therapeutic pathways that aim to maximize efficacy while minimizing adverse effects and unnecessary interventions.

Ethical and Practical Considerations

Despite its promise, the implementation of artificial intelligence in ophthalmology faces important challenges related to data privacy, algorithmic bias, and the need for rigorous clinical validation. Ensuring that artificial intelligence models are generalizable across diverse populations requires training and testing on heterogeneous datasets that adequately represent variation in ethnicity, disease severity, imaging platforms, and clinical settings. In addition, interpretability and transparency remain essential to support clinician trust, facilitate appropriate clinical decision making, and meet regulatory requirements. In the near term, hybrid approaches that integrate artificial intelligence outputs with expert clinical judgment are likely to provide the most practical pathway for safe, effective, and accountable deployment in routine ophthalmologic practice.

Conclusion

Artificial intelligence driven tools for self-diagnosis, self-monitoring, and personalized medicine are increasingly reshaping ophthalmic care. By improving early disease detection, supporting continuous disease management, and enabling individualized therapy, these technologies have the potential to reduce preventable vision loss and improve patient outcomes worldwide. Continued interdisciplinary collaboration among clinicians, data scientists, engineers, and regulatory bodies will be essential to ensure that artificial intelligence is integrated into ophthalmology in an ethical, equitable, and clinically effective manner.

7- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN ORAL DISEASES

Background

Evolution and Significance of Artificial Intelligence in Dentistry

Artificial intelligence has progressively evolved into a transformative force in dentistry, revolutionizing diagnostic, therapeutic, and administrative practices with increased accuracy and efficiency. The historical progression of artificial intelligence in this field reflects key developments, moving from basic computational tools toward advanced machine learning and deep learning models capable of interpreting complex clinical datasets. Early applications were primarily focused on automating image assessment and recognizing patterns in dental radiographs. Over time, these applications expanded to include complex diagnostic tasks, algorithm based treatment planning, and intelligent patient management systems. This progression highlights the important contribution of artificial intelligence in complementing human diagnostic skills by reducing subjectivity, minimizing errors,

and improving reproducibility.

Recent technological advances have further broadened the role of artificial intelligence across multiple areas of oral healthcare. Machine learning algorithms, particularly convolutional neural networks, now process large image datasets derived from radiographs, intraoral scans, and three dimensional imaging to identify early and subtle signs of oral disease that conventional diagnostic approaches may fail to detect. Beyond diagnostics, artificial intelligence supports the development of customized treatment plans tailored to individual patient characteristics, thereby improving outcomes and reinforcing a patient centered model of care. Its application extends beyond image interpretation to clinical operations, where it enhances scheduling efficiency, enables virtual consultations, and supports post treatment follow up through automated decision support systems. In alignment with evidence based dentistry, artificial intelligence strengthens clinical decision making by complementing professional expertise with data driven insights and reducing diagnostic uncertainty, ultimately improving the quality and consistency of dental services.

According to the World Health Organization oral health status report, nearly half of the world population, approximately 3.5 billion people, experiences variable degrees of oral health issues.

Over the past three decades, the number of affected cases has increased by nearly one billion, clearly indicating that many individuals lack adequate access to preventive measures and appropriate treatment for oral health care.

Among oral diseases, dental caries and periodontal disease are the most prevalent conditions, affecting approximately 20 to 50 percent of the global population. The etiology of periodontal disease is largely attributed to a lack of motivation and inadequate oral hygiene maintenance, which contributes to disease progression and long-term oral health complications.

Chronic systemic conditions that affect overall general health, including diabetes mellitus, obstructive sleep apnea, osteoporosis, and cardiovascular disease, have a significant impact on oral tissues. These systemic conditions increase the potential risk of periodontal disease, dental caries, and tooth loss, highlighting the close interrelationship between oral health and systemic health.

Many individuals face difficulties and limitations in accessing dental care for preventive advice and timely disease diagnosis. Factors such as the dentist to patient ratio, treatment costs, and socioeconomic barriers contribute to inadequate oral health care access. In recent years, extensive research and advances in technology and science have been conducted to enhance interdisciplinary care, improve early detection of oral diseases,

reduce clinical burden, and consequently improve patient outcomes.

Artificial intelligence has rapidly expanded across various areas of health care and has gained significant traction in clinical decision making, personalized and accurate diagnostics, and real time monitoring with predictive analytics. In particular, deep learning and machine learning approaches applied to electronic health records enable early caries detection through radiographic interpretation, oral lesion classification, and periodontal assessment. Artificial intelligence is currently used across multiple dental specialties, including operative dentistry, preventive dentistry, endodontics, orthodontics, periodontics, prosthodontics, oral surgery, and oral radiology. Machine learning facilitates pattern recognition within complex datasets, while deep learning techniques, including convolutional neural networks and artificial neural networks, support image analysis, risk prediction, and disease classification.

One key strategy for achieving optimal oral hygiene and effective preventive measures is the provision of oral health instructions. Historically, oral health instructions have been delivered by dental professionals through one on one direct patient education, although challenges related to cost effectiveness and scalability have been recognized.

Today, the integration of smartphone technology

with artificial intelligence powered systems has facilitated remote consultations and promoted patient education through behavioral modification and reinforcement of oral hygiene practices. Mobile health technology has been proposed as a tool for disease detection and for delivering personalized feedback and advice, and it has been widely applied in oral health care. Globally, advances in smartphones equipped with high quality cameras, combined with the development of artificial intelligence, have enabled disease diagnosis through advanced algorithms that can evaluate photographs for gingival inflammation and plaque accumulation with high precision, thereby detecting early stages of periodontal diseases such as gingivitis.

Despite this rapid growth, the application of artificial intelligence in health care is associated with significant regulatory and ethical challenges that require careful consideration. These challenges range from safeguarding patient data privacy to addressing potential algorithmic biases. Furthermore, the application of artificial intelligence in individuals with medically compromised conditions has not been widely investigated through experimental research. Most available artificial intelligence models are trained and validated using data obtained from generally healthy populations. As a result, these models may fail to recognize complex comorbidities, physiological alterations, individual patient

profiles, and treatment complexities in patients with existing medical conditions, potentially compromising diagnostic accuracy and clinical reliability.

Globally, periodontitis ranks as the sixth most prevalent health condition and is characterized as a persistent inflammatory disorder affecting the supporting tissues of the teeth, specifically the gingiva, periodontal ligament, cementum, and alveolar bone. The primary etiological factor for the onset of gingivitis is attributed to the accumulation of biofilm on dental surfaces, a condition manifested by erythematous and edematous gingival margins, together with hemorrhage induced by sulcular probing or routine oral hygiene practices. This initial stage is completely reversible, provided that timely and appropriate interventions, such as improved oral hygiene practices and or professional dental prophylaxis, are implemented. Without adequate management, gingivitis typically progresses to periodontitis, a condition that ultimately culminates in odontogenic tooth loss if left unaddressed. Alongside dental caries, periodontitis represents a principal indication for tooth extraction. Data from the Centers for Disease Control and Prevention indicate that periodontal disease affects approximately 46 percent of the adult population in the United States, with prevalence increasing to over 70 percent among the elderly population.

Periodontitis predominantly affects middle aged and elderly populations, and its prevalence is particularly high in industrialized nations. It is important to note that the proportion of elderly individuals in these countries is steadily increasing, which may contribute to a further rise in the prevalence of periodontitis in the coming years.

Periodontology, defined as the study of the supporting structures of the teeth and the diseases that affect them, is entering a new era characterized by an increasing reliance on data and diagnosis. Two major factors are driving this transformation in periodontology. The first is a deeper understanding of the complex and multifactorial etiology of periodontal diseases. The second is the introduction of a revised periodontitis classification system in 2017. It is well established that periodontitis is an inflammatory disease mediated by multiple factors, including age, smoking, physical activity, obesity, oral hygiene practices, diabetes, and other systemic diseases. Despite considerable advances in periodontal research over recent decades, the etiology of periodontitis is still not completely understood.

In addition, during the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions, the American Academy of Periodontology and the European Federation of Periodontology proposed a revised

classification system for periodontitis. This new system considers not only disease severity, but also the complexity of managing the condition and the rate of disease progression. To adequately reflect this complexity, a more extensive set of data points is required for proper classification, which in turn allows for a more comprehensive understanding of a patient's periodontal status and associated management needs.

In the pursuit of effective periodontal care, the integration of data driven approaches and advanced diagnostic tools has become increasingly important. This process typically includes site based clinical examinations assessing multiple periodontal parameters, such as plaque, calculus, bleeding on probing, probing depth, clinical attachment loss, gingival recession, and furcation involvement. It also involves the evaluation of numerous risk factors derived from patient interviews and or questionnaires, as well as the use of multiple imaging modalities at various stages of treatment to assess prognosis. Furthermore, despite significant increases in computing power at relatively low cost and advances in biomarker detection from sources such as the oral microbiome, proteome, and metabolome, it is still not feasible to integrate these data routinely into standard dental diagnostic workflows.

At the same time, the introduction of artificial intelligence into healthcare has transformed

diagnostic and therapeutic concepts across several medical disciplines, and dentistry is no exception. Although artificial intelligence has been implemented in various areas of medicine and dentistry in recent years, its application in periodontology has been relatively limited. While recent review articles have applied the concept of P4 medicine to enhance precision in periodontal care, a significant gap remains in the literature regarding personalized periodontal diagnosis. This article therefore aims to explore the concept of personalized diagnostics in periodontology in greater depth, with particular emphasis on the potential role of artificial intelligence. In doing so, this work seeks to provide a foundation for future research and clinical application, supporting the advancement of evidence based periodontal care.

What Is Personalized Medicine

Periodontal diagnostics currently follow a stratification based approach that relies on risk assessment and clinical examination. Based on these assessments, patients are stratified into different risk or disease categories, and similar treatment strategies are assigned to all individuals within a given category, following a one size fits all model. One major limitation of this approach is that it treats patients within each category as statistical averages and does not adequately account for individual patient characteristics or physiological variations.

In contrast, personalized medicine integrates risk algorithms, molecular diagnostics, targeted therapies, and pharmacogenomics, which refers to individual variability in drug response, to improve healthcare outcomes by linking a patient's molecular profile with clinical features. In practical terms, personalized medicine focuses on identifying subgroups of patients within larger populations who are more likely to benefit from specific therapeutic interventions, such as nonsurgical periodontal therapy combined with systemic antibiotics.

The term personalized medicine is often used interchangeably with precision medicine. Precision medicine refers to treatments that are tailored to the needs of individual patients based on genetic, biomarker, phenotypic, or psychosocial characteristics that distinguish one patient from another with a similar clinical presentation. In this context, precision medicine aims to identify specific genetic mutations or biological markers that can be targeted through customized therapeutic strategies. Precision medicine is also closely associated with the concept of P4 medicine, which emphasizes predictive, preventive, personalized, and participatory approaches by leveraging large datasets, including routine clinical data and omics data, together with advanced analytical techniques.

What Is Artificial Intelligence

Artificial intelligence represents a branch of computer science focused on the development of intelligent systems or programs capable of performing tasks that mimic human cognitive functions, often with greater speed and accuracy. Within artificial intelligence, machine learning constitutes a core subfield that applies statistical models to classify data or images and to predict risks or outcomes using computational techniques such as regression analysis, k nearest neighbors, decision trees, random forests, and support vector machines. The fundamental goal of machine learning is to enable computers to autonomously recognize patterns and make data driven decisions.

Machine learning approaches are broadly categorized into supervised and unsupervised learning. In supervised learning, models are trained using datasets that contain predefined outcome labels or classification variables. In contrast, unsupervised learning involves training models on unlabeled datasets, requiring the system to independently identify underlying structures or patterns within the data. Regardless of the learning approach, model performance is typically validated using independent datasets and evaluated using various performance metrics, including sensitivity, specificity, accuracy, balanced accuracy, and the F1 score, which

represents the harmonic mean of precision and recall.

Deep learning is a specialized subfield of machine learning that employs algorithms inspired by the structure and function of the human brain, commonly referred to as artificial neural networks. These networks consist of interconnected processing units, or neurons, that enable hierarchical feature learning from complex data. Among deep learning architectures, convolutional neural networks have demonstrated particular effectiveness in the analysis and interpretation of complex image based data. Convolutional neural networks use convolutional layers to analyze localized regions of input data, allowing for the extraction and integration of spatial features and patterns with a high degree of precision.

Scope of Artificial Intelligence Applications in Oral Disease Management

Artificial intelligence technologies are now applied across a broad spectrum of oral health conditions, including dental caries, periodontitis, and oral cancer, all of which carry significant clinical and public health implications. These systems are utilized for early disease detection, longitudinal disease monitoring, and individualized treatment planning. Machine learning approaches have demonstrated

effectiveness in identifying early carious lesions and periodontal changes through the analysis of radiographic data and cone beam computed tomography images, enabling timely intervention before irreversible tissue damage occurs.

In addition, artificial intelligence facilitates the integration of heterogeneous datasets, including genomic information and clinical histories, to construct comprehensive patient profiles that support personalized dental care. This integrative capability allows clinicians to tailor preventive and therapeutic strategies according to individual risk factors, disease trajectories, and treatment responses through advanced predictive analytics. In the field of oral oncology, artificial intelligence contributes to tumor staging, prognosis estimation, and precision treatment design by synthesizing clinical, histological, and molecular data, thereby supporting clinicians in the management of complex cancer cases with improved accuracy and confidence.

Challenges and Ethical Considerations in Artificial Intelligence Deployment

Despite its substantial benefits, the integration of artificial intelligence into oral healthcare presents ethical and practical challenges that require careful consideration and regulation. Data privacy remains a major concern, as patient information used for training and validating artificial

intelligence systems may be vulnerable to unauthorized access or misuse. Algorithmic bias is another critical issue, often arising from training datasets that lack sufficient diversity, which can result in unequal diagnostic performance and treatment outcomes across different populations.

Ethical responsibility requires that artificial intelligence driven decision making remains transparent so that clinicians and patients can understand and trust system recommendations. Informed consent is essential when artificial intelligence tools influence diagnostic or therapeutic decisions, necessitating clear communication and well defined governance structures. Regulatory challenges also persist due to limited standardization and oversight of artificial intelligence tools within dentistry. Addressing these issues requires coordinated collaboration among researchers, clinicians, policymakers, and ethicists to establish frameworks that ensure artificial intelligence technologies are implemented in a safe, fair, and responsible manner. The long term success of artificial intelligence in dentistry depends on sustained interdisciplinary efforts to integrate ethical principles, accountability, and clinical oversight into ongoing technological innovation.

Artificial Intelligence Techniques for Self-Diagnosis in Oral Diseases

Machine Learning and Deep Learning Algorithms

The application of artificial intelligence for self-diagnosis in oral health has gained considerable momentum, as advanced computational models increasingly enable autonomous analysis of dental images and related clinical data. Among these approaches, convolutional neural networks, a key subset of deep learning, are particularly valued for their high accuracy in image classification tasks. These networks extract multilayered features from dental radiographs and intraoral photographs, making them effective tools for identifying dental caries, alveolar bone loss associated with periodontitis, and soft tissue lesions.

Support vector machines and fuzzy logic systems further enhance the analytical sophistication of dental image interpretation by addressing variability and uncertainty inherent in imaging datasets. Fuzzy clustering algorithms can accurately segment regions of interest in radiographic images, while support vector machine classifiers differentiate healthy from diseased tissue. These data driven models continue to improve as they are exposed to larger and more diverse datasets, supporting earlier disease detection and enabling patients to engage in proactive self-monitoring of their oral health status.

Artificial Intelligence Powered Diagnostic Tools and Mobile Applications

The integration of artificial intelligence diagnostic algorithms into mobile and user centered platforms has made self-evaluation of oral health increasingly feasible outside traditional clinical environments. These applications allow users to upload intraoral photographs, radiographs, or scan data for automated assessment of common dental conditions such as caries, gingivitis, and periodontal disease. Convolutional neural network based models analyze these images and provide rapid diagnostic feedback, enabling users to recognize early disease indicators and seek timely professional consultation.

Comparative investigations indicate that artificial intelligence based diagnostic performance is approaching, and in some instances matching, that of experienced dental clinicians. Artificial intelligence models trained on large and representative datasets have demonstrated high levels of diagnostic agreement with professional evaluations, supporting their role as preliminary screening tools for self-diagnosis. Recent advances in multimodal artificial intelligence systems, including vision foundation models that integrate multiple imaging modalities, continue to expand the accuracy, scope, and accessibility of mobile diagnostic applications, enhancing user

confidence in remote oral health assessment.

Limitations and Validation of Artificial Intelligence Self Diagnostic Models

Despite their growing promise, artificial intelligence based self-diagnostic technologies face several limitations that require rigorous validation. Variability in image quality due to lighting conditions, focus, and user technique can significantly influence model performance, necessitating the development of algorithms robust to real world variability. Furthermore, the limited availability of large, well annotated datasets that adequately represent diverse populations constrains the generalizability of many existing models.

Comprehensive clinical validation through prospective studies and real world trials is essential to establish acceptable sensitivity and specificity thresholds for safe deployment. Overdiagnosis may lead to unnecessary anxiety or overtreatment, whereas underdiagnosis risks delaying essential care. Consequently, artificial intelligence systems should be embedded within clinician supervised decision support frameworks. Continuous refinement through feedback mechanisms that incorporate new patient data and expert review is critical for improving performance over time. The establishment of standardized benchmarks, testing protocols, and

regulatory guidelines remains necessary to ensure the safety, reliability, and clinical utility of artificial intelligence self-diagnostic tools in dentistry.

Artificial Intelligence in Self-Monitoring and Disease Progression Tracking

Remote Monitoring Technologies for Oral Hygiene

Artificial intelligence enabled remote monitoring platforms have introduced new approaches for continuous surveillance of oral health, particularly in orthodontic and periodontal care. These systems utilize intraoral cameras and smart sensors to capture and analyze real time oral hygiene data. Weekly image uploads assessed by artificial intelligence algorithms can generate personalized feedback through mobile applications, guiding users toward improved plaque control and gingival health. Clinical observations indicate that patients receiving artificial intelligence guided feedback often demonstrate improved oral hygiene outcomes compared with those receiving standard care.

By transforming oral hygiene management into an interactive and dynamic process, these platforms encourage active patient participation while supporting early identification of disease progression. At the same time, they enable

clinicians to adjust treatment plans proactively and improve clinical efficiency through streamlined data management and follow up processes.

Integration of Flexible Electronics and Artificial Intelligence for Oral Health

Recent advances in flexible electronic sensor technology have enabled continuous real time monitoring of the oral environment and can be effectively combined with artificial intelligence analytics. These biocompatible sensors conform to the dynamic and moist surfaces of the oral cavity and are capable of measuring parameters such as pH, temperature, and salivary biomarkers associated with disease development. When integrated with artificial intelligence algorithms, these continuous data streams support predictive and responsive early warning systems capable of detecting subclinical changes before overt symptoms become evident.

The durability of flexible sensors allows them to function under challenging oral conditions involving mechanical stress and enzymatic exposure. Artificial intelligence driven pattern recognition and predictive modeling interpret sensor data to identify anomalies, personalize health recommendations, and forecast disease risk. Addressing design, mechanical, and ethical challenges, including long term durability, patient

comfort, and data privacy, remains essential for safe and reliable clinical adoption.

Predictive Modeling for Disease Progression and Risk Assessment

Predictive modeling represents a central contribution of artificial intelligence to modern oral healthcare by enabling risk stratified management and disease forecasting. Machine learning systems analyze longitudinal datasets that include clinical findings, genetic information, lifestyle factors, and treatment history to assess individual susceptibility and predict disease progression with increasing accuracy. These models assist clinicians in optimizing the timing and intensity of interventions, reducing invasive procedures while maximizing therapeutic effectiveness.

By integrating multimodal data sources such as genomic and proteomic profiles, decision support systems can more accurately characterize disease mechanisms, including periodontal inflammation and oral carcinogenesis. The convergence of artificial intelligence with predictive analytics supports a transition from reactive treatment toward preventive and personalized dental care, empowering both clinicians and patients to anticipate and mitigate oral health risks before disease progression occurs.

Personalized Medicine Enabled

***by Artificial Intelligence
in Oral Diseases***

***Genomic and Multi Omics
Data Integration***

The advancement of personalized medicine in oral healthcare is being accelerated by artificial intelligence through the integration of multi omics technologies, including genomics, proteomics, transcriptomics, and metabolomics. Artificial intelligence systems process these complex datasets to identify molecular mechanisms and disease specific biomarkers that inform individualized therapeutic strategies. This capability enhances precision in understanding biological pathways involved in oral diseases and tailoring interventions accordingly.

In conditions such as oral squamous cell carcinoma and chronic periodontal inflammation, artificial intelligence driven multi omics analysis supports the identification of patient specific etiological factors and the prediction of treatment outcomes. Advanced learning algorithms interpret genomic alterations and expression profiles to assess disease susceptibility and identify novel diagnostic and prognostic markers. By integrating molecular insights with conventional clinical data, artificial intelligence enables the development of personalized treatment frameworks aligned with each patient's unique biological and environmental

context. In oral oncology, these integrative approaches support precision targeted therapies based on tumor genetic architecture and host characteristics, contributing to improved therapeutic outcomes and overall patient prognosis.

AI-Driven Treatment Planning and Optimization

Artificial intelligence assisted treatment planning has transformed how clinicians strategize and optimize care in dentistry. Machine learning models interpret imaging data, medical histories, and treatment response information to recommend customized approaches that improve accuracy and reduce procedural risks. Applications in implantology, orthodontics, and oral and maxillofacial surgery include predictive modeling of bone density, simulation of surgical pathways, and adaptive selection of minimally invasive techniques that are tailored to each patient's anatomical characteristics.

In addition, robotic assisted systems guided by artificial intelligence algorithms provide enhanced precision and stability during complex interventions such as implant placement and reconstructive procedures. These systems rely on real time feedback to dynamically adjust instrument positioning, thereby reducing error rates and supporting improved postoperative recovery. The emergence of digital twin

technology, defined as virtual patient specific replicas, further individualizes dental care by enabling preoperative simulation and intraoperative adaptation, which contributes to greater treatment accuracy and improved patient outcomes.

Enhancing Drug Efficacy and Minimizing Adverse Effects

Artificial intelligence plays a central role in pharmacogenomics by advancing individualized drug therapy in oral healthcare. Through the analysis of patient genetic profiles, artificial intelligence models can predict drug metabolism rates, therapeutic effectiveness, and the likelihood of adverse reactions, thereby guiding clinicians toward safer and more effective prescribing decisions. This data driven approach reduces reliance on traditional trial and error methods and improves the predictability of treatment outcomes.

Beyond optimizing drug selection and dosage, artificial intelligence driven drug discovery and drug repurposing frameworks enable the identification of novel therapeutic compounds for oral diseases and allow early prediction of potential side effects during preclinical testing phases. This process shortens development timelines and reduces associated costs. Moreover, continuous artificial intelligence based monitoring of patient responses enables dynamic

dose adjustments and early identification of toxicity risks, which is particularly valuable in the management of complex or chronic oral diseases.

AI-Powered Imaging and Diagnostic Precision

Radiographic Analysis and Automated Lesion Detection

Radiographic imaging remains a foundational component of diagnosis in oral healthcare and has been significantly enhanced through artificial intelligence assisted interpretation. Deep learning architectures, particularly convolutional neural networks, are widely applied to analyze panoramic, periapical, and cone beam computed tomography images for the detection of dental caries, alveolar bone loss, cystic lesions, and oral malignancies. These algorithms have demonstrated diagnostic performance that rivals and in some cases exceeds that of experienced clinicians, offering faster and more objective image analysis.

Artificial intelligence based lesion detection enables high throughput screening of large image repositories, ensuring comprehensive evaluation while reducing clinician fatigue and the risk of oversight. This automation improves workflow efficiency, prioritizes high risk findings, and shortens diagnostic turnaround times, thereby supporting earlier intervention and

improved clinical outcomes. The development of vision foundation models further strengthens diagnostic capability by integrating information from multiple imaging modalities to generate unified and detailed interpretations.

Multi-Modality Artificial Intelligence Models for Comprehensive Diagnostics

The development of multi-modality artificial intelligence systems represents a major advancement beyond traditional single image analysis. Vision foundation models trained using self-supervised learning on extensive two dimensional and three dimensional imaging datasets establish generalized visual representations applicable across a range of dental specialties, including orthodontics, endodontics, and oral pathology.

These models are validated on diverse datasets drawn from multiple populations, supporting adaptability and diagnostic equity. Their capacity to identify anatomical landmarks and classify complex lesions with high resolution enhances clinical confidence and diagnostic depth. Integration of these tools into routine dental workflows enables practitioners to make more informed and patient specific clinical decisions supported by artificial intelligence derived insights.

Integration of Saliva-Based Biomarker Diagnostics

Beyond imaging, artificial intelligence has substantially advanced saliva based diagnostics by providing a non-invasive and rapid approach to detecting oral diseases. Salivary biomarkers, including cytokines, interleukins, and microRNAs, serve as important indicators for early stage malignancies and inflammatory conditions. Artificial intelligence algorithms enhance analytical precision by identifying subtle variations in biomarker expression, thereby improving diagnostic sensitivity and specificity.

When combined with radiographic data, artificial intelligence driven biomarker analysis enables multidimensional diagnostic profiling that aligns with the principles of precision dentistry. This integrated approach supports early disease detection, personalized management strategies, and regular monitoring with minimal patient discomfort. The combination of biological and imaging data promotes comprehensive patient evaluation and facilitates timely, targeted interventions that improve prognosis and care efficiency.

AI in Teledentistry and Remote Patient Management

Enhancing Access and Care for

Underserved Populations

Artificial intelligence integrated teledentistry provides an effective response to accessibility challenges faced by remote and underserved populations. Through artificial intelligence powered image analysis and data interpretation tools, clinicians can conduct remote assessments, triage cases, and deliver preliminary diagnoses without the need for in person visits. This approach reduces geographic and financial barriers and expands access to dental care.

Artificial intelligence enhanced electronic health record systems support efficient patient data management, treatment planning, and disease tracking. These technologies also empower individuals to engage in preventive self-care and ongoing monitoring, contributing to reduced oral disease burden among populations historically excluded from traditional dental services. By broadening access to professional expertise, artificial intelligence supported teledentistry promotes greater equity in global oral health.

Artificial Intelligence Supported Virtual Consultations and Follow-Ups

Artificial intelligence tools embedded within virtual consultation platforms improve treatment follow up and adherence monitoring in remote dental care. In orthodontic treatment,

for example, artificial intelligence systems can monitor appliance usage and hygiene practices, generating automated alerts or personalized guidance to support patient compliance.

Virtual assistants and artificial intelligence chatbots facilitate continuous communication between patients and clinicians, enabling timely feedback, remote supervision, and proactive management of emerging issues. These systems support continuity of care and reduce the likelihood of treatment complications. As a result, modern teledentistry platforms are evolving into integrated digital ecosystems that combine artificial intelligence analytics with telecommunication technologies to deliver high quality remote dental services.

***Challenges and Future Prospects
in Artificial Intelligence
Enabled Teledentistry***

Despite its considerable promise, artificial intelligence driven teledentistry faces several challenges. Differences in digital literacy, access to appropriate hardware, and reliable internet connectivity may limit adoption, particularly among older adults and low income populations. Ensuring patient privacy and data security remains a critical concern, requiring strong encryption methods and compliance with healthcare data protection standards.

Ethical considerations, including informed consent, accountability, and algorithmic transparency, must be incorporated into clinical practice guidelines. The development of comprehensive regulatory frameworks is essential to support safe and equitable use of artificial intelligence in remote dental settings. As technology continues to mature, artificial intelligence enabled teledentistry is expected to support a shift toward preventive, continuous, and personalized models of oral healthcare delivery.

***AI Integration with Robotics
in Oral Healthcare***

***Robotics Assisted Diagnostic
and Surgical Interventions***

The integration of artificial intelligence with robotic systems is reshaping contemporary dentistry by improving diagnostic accuracy and enhancing surgical outcomes. Artificial intelligence guided robotic devices provide superior dexterity and stability during complex procedures, including implant placement, endodontic therapy, and maxillofacial reconstruction. Continuous artificial intelligence based feedback optimizes real time navigation and instrument control, reducing procedural inaccuracies and supporting faster recovery and improved clinical results.

Emerging technologies such as nanorobots and

microbots directed by artificial intelligence algorithms enable minimally invasive approaches for localized drug delivery, cavity restoration, and targeted endodontic applications. These autonomous or semi-autonomous systems operate within confined oral environments and perform complex tasks with micro scale precision. Robotic assisted maxillofacial procedures also allow preprogrammed bone manipulation and reconstructive interventions with accuracy levels that exceed traditional manual techniques.

Automation of Clinical and Administrative Processes

Artificial intelligence is also transforming the administrative aspects of dental practice. Intelligent automation supports scheduling, billing, and electronic health record management, reducing clinician workload and minimizing operational errors. Artificial intelligence powered chatbots and digital assistants engage patients by providing educational resources and real time responses, which enhances adherence and patient satisfaction.

At the same time, artificial intelligence driven analytics streamline organizational data management and support continuous quality improvement and informed decision making. By integrating clinical and administrative functions, artificial intelligence enhances efficiency while maintaining high standards of care delivery.

Ethical and Practical Challenges in Robotic Dentistry

Despite its clinical advantages, the implementation of artificial intelligence driven robotic systems raises ethical and legal concerns related to autonomy, accountability, and informed consent. Clear frameworks are required to define responsibility in cases involving artificial intelligence assisted errors. Protecting patient data within interconnected robotic environments is also essential to preserve trust and confidentiality.

Maintaining an appropriate balance between machine precision and clinician expertise is critical to ensure ethical and responsible application of these technologies. International regulatory harmonization and the establishment of global standards will be necessary to guide the safe and effective adoption of robotic dentistry.

Data Management and Artificial Intelligence in Oral Health Informatics

Collection, Sharing, and Analytics of Oral Health Data

Digital transformation in dentistry has generated extensive volumes of clinical data, including imaging, records, and procedural documentation, forming the foundation of artificial intelligence

enabled oral health informatics. Establishing interoperability standards and secure data sharing mechanisms is essential to support reliable integration and collaboration across institutions.

Emerging technologies such as blockchain and cryptographic systems enhance data security, transparency, and traceability, facilitating the creation of longitudinal datasets required for adaptive artificial intelligence learning and population health analysis. These comprehensive data infrastructures empower clinicians with decision support tools while ensuring compliance with ethical and legal requirements.

Big Data and Artificial Intelligence for Population Health and Epidemiology

At the population level, artificial intelligence driven analysis of large scale datasets supports surveillance of oral disease trends, identification of vulnerable groups, and evidence informed policy development. Predictive modeling enables early prevention initiatives, disease trend monitoring, and strategic allocation of healthcare resources.

By incorporating social and behavioral determinants, artificial intelligence models clarify the multifactorial nature of oral diseases and support the design of equitable public health interventions. Integrating oral health data with

broader systemic health information strengthens population level strategies and promotes holistic well-being.

Challenges in Data Privacy, Security, and Ethical Use

The reliance of artificial intelligence systems on large and diverse datasets presents challenges related to fairness, privacy, and transparency. Biased or non-representative training data may perpetuate inequities in diagnosis and treatment outcomes. Ethical artificial intelligence development therefore requires careful dataset curation that reflects population diversity and transparent algorithm design.

Legal and regulatory frameworks must evolve to enforce standards for validation, accountability, and ethical deployment in clinical practice. Ongoing collaboration among data scientists, clinicians, ethicists, and regulators is essential to establish trustworthy governance for digital oral health systems.

Indeed, despite its considerable advantages, the integration of artificial intelligence into dental practice is associated with important challenges. Concerns related to data privacy, algorithmic bias, and robust clinical validation require careful consideration and systematic oversight. The development of ethical frameworks and standardized, high quality datasets is essential to

ensure fairness, transparency, and patient safety. In addition, future research should prioritize explainable artificial intelligence approaches and regulatory alignment to support responsible implementation and broader acceptance within oral healthcare systems.

Future Directions and Innovations in Artificial Intelligence for Oral Health

Advances in Explainable Artificial Intelligence and Model Transparency

Explainable artificial intelligence has emerged as a critical area for improving clinician confidence and patient acceptance of artificial intelligence assisted care. Explainable tools clarify how artificial intelligence systems generate predictions and recommendations, enabling clinicians to interpret and validate outputs before clinical application.

Practical use of explainable artificial intelligence in dentistry has demonstrated improved diagnostic reliability and clinical accountability, bridging the gap between algorithmic performance and clinical reasoning. As transparency focused artificial intelligence continues to evolve, it will play an increasingly important role in supporting collaborative and human centered dental care models.

Multimodal Artificial Intelligence and Digital Twins in Personalized Dentistry

The convergence of multimodal data integration and digital twin technologies represents a major advance in personalized dentistry. Digital twins, defined as virtual representations of a patient's oral anatomy and physiology, enable predictive simulation of treatment outcomes and disease progression.

By integrating genomic, imaging, and behavioral data, multimodal artificial intelligence systems generate comprehensive patient profiles that inform adaptive and individualized treatment strategies. This precision oriented approach reduces clinical uncertainty, improves therapeutic outcomes, and supports real time optimization of care.

Collaborative, Ethical, and Regulatory Frameworks

The global expansion of artificial intelligence in oral healthcare requires coordinated multidisciplinary frameworks that address ethical design, validation processes, and regulatory compliance. Collaboration among clinicians, engineers, ethicists, and policymakers is essential to promote responsible innovation and protect patient safety.

Well-structured regulations must support technological advancement while safeguarding patient autonomy, equity, and data stewardship. Ethical principles such as transparency, inclusivity, and accountability should guide the integration of artificial intelligence into routine dental practice.

Conclusion and Clinical Implications

Summary of Artificial Intelligence in Oral Disease Self Diagnosis and Personalized Care

Artificial intelligence technologies are reshaping oral healthcare by empowering patients through self-assessment tools and enabling clinicians to deliver highly individualized care. From early disease detection to treatment customization, artificial intelligence applications enhance diagnostic accuracy and support data driven clinical decision making.

Through integration with imaging, biomarker analysis, and predictive modeling, artificial intelligence strengthens precision medicine frameworks and promotes proactive, patient centered care that improves outcomes and optimizes resource utilization.

Artificial intelligence driven self-diagnosis, self-monitoring, and personalized oral medicine together redefine contemporary dental practice.

By enabling early detection, continuous patient engagement, and precision based therapy, artificial intelligence supports a shift toward proactive, data driven, and patient centered oral health management. The future of dentistry increasingly relies on the integration of intelligent digital systems that empower both patients and clinicians to achieve optimal oral and overall systemic health outcomes.

Clinical Integration and Workflow Improvement

The integration of artificial intelligence systems into dental practice streamlines clinical workflows, supports decision making, and automates administrative processes. These tools allow clinicians to focus more time on complex clinical judgment while maintaining operational efficiency.

Artificial intelligence powered scheduling, billing, and teleconsultation platforms enhance patient engagement and adherence, while continuous data driven monitoring supports continuity of care. Scalable artificial intelligence solutions also hold promise for extending high quality dental services to resource limited settings.

Future Outlook and Research Needs

Despite rapid advancements, continued clinical validation and real world evaluation are necessary to confirm the reliability, fairness,

and generalizability of artificial intelligence applications. Addressing bias, strengthening ethical governance, and updating regulatory frameworks remain essential priorities.

Future progress will depend on adaptive regulation, global accessibility initiatives, and cross disciplinary research efforts. Responsible implementation will ensure that artificial intelligence continues to evolve as a sustainable, equitable, and transformative force in dentistry.

8- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN ENT DISEASES

Background

Diseases of the ear, nose, and throat, commonly referred to as ENT diseases or otolaryngological disorders, constitute a major component of global morbidity across all age groups. These conditions encompass a wide spectrum of acute and chronic disorders, including otitis media, hearing loss, tinnitus, vestibular disorders, allergic rhinitis, chronic rhinosinusitis, obstructive sleep apnea, voice disorders, swallowing dysfunction, and head and neck cancers. ENT diseases affect essential sensory and physiological functions such as hearing, balance, breathing, speech, smell, and swallowing, thereby exerting a profound impact on communication, daily functioning, social interaction, and quality of life.

Despite their prevalence, ENT diseases are frequently underdiagnosed or diagnosed at advanced stages. Early symptoms are often subtle, nonspecific, or intermittent, leading patients to delay seeking specialist care. Access to otolaryngology services is limited in many regions due to workforce shortages, geographic barriers,

and healthcare system constraints. Traditional ENT care is largely episodic and clinic based, relying on in-person examinations, specialized equipment, and subjective clinical interpretation. This approach may fail to capture disease dynamics over time and does not fully leverage patient-generated data outside the clinical setting.

Artificial intelligence has emerged as a transformative force capable of addressing many of these limitations. Artificial intelligence includes machine learning, deep learning, natural language processing, and advanced data analytics that enable computers to learn from data, identify complex patterns, and generate predictive insights. ENT diseases are particularly well suited for artificial intelligence applications because they generate diverse and information-rich data types, including medical images, endoscopic videos, audiograms, voice recordings, physiological signals, and patient-reported symptoms. Artificial intelligence systems can analyze these multimodal datasets with high accuracy and consistency, supporting earlier detection, continuous monitoring, and individualized treatment planning.

Three interrelated domains define the transformative potential of artificial intelligence in ENT care: self-diagnosis, self-monitoring, and personalized medicine. Self-diagnosis tools empower individuals to perform preliminary

assessments of ENT symptoms using accessible technologies such as smartphones and wearable devices. Self-monitoring systems enable longitudinal tracking of symptoms, physiological signals, and treatment response in real-world environments. Personalized medicine leverages artificial intelligence to tailor diagnostic strategies, prognostic assessments, and therapeutic interventions to individual patient characteristics, disease phenotypes, and risk profiles. Together, these approaches shift ENT care toward a proactive, patient-centered, and data-driven model.

This chapter provides a comprehensive overview of artificial intelligence for self-diagnosis, self-monitoring, and personalized medicine in ENT diseases. It examines current technologies, clinical applications, methodological advances, ethical considerations, and future directions, highlighting how intelligent systems can complement clinical expertise, empower patients, and improve outcomes across otolaryngology.

Artificial Intelligence for Self-Diagnosis in ENT Diseases

Self-diagnosis in ENT diseases is particularly relevant because many symptoms are initially perceived and reported by patients themselves. Ear pain, hearing changes, nasal obstruction, voice hoarseness, dizziness, and throat discomfort are

often noticed early but may be misinterpreted or ignored. Artificial intelligence offers tools that support self-diagnosis by systematically analyzing symptoms, audio signals, images, and physiological data.

One of the most mature areas of artificial intelligence-driven self-diagnosis in ENT is hearing assessment. Smartphone-based audiometry applications combined with machine learning algorithms allow individuals to perform hearing screening tests at home. These systems analyze tone recognition, speech perception, and response patterns to estimate hearing thresholds and identify potential hearing loss. Artificial intelligence enhances accuracy by compensating for environmental noise, device variability, and user behavior. Such tools are particularly valuable for early detection of age-related hearing loss, noise-induced hearing damage, and pediatric hearing impairment.

Voice analysis represents another important self-diagnosis application. Voice disorders may be early indicators of laryngeal pathology, neurological disease, or head and neck cancer. Artificial intelligence models trained on acoustic features such as pitch, jitter, shimmer, and spectral patterns can analyze voice recordings captured via smartphones. These systems can identify abnormal voice characteristics associated with vocal fold nodules, paralysis, or malignant lesions,

prompting timely clinical evaluation.

In sinonasal disease, self-diagnosis tools use symptom questionnaires combined with machine learning to differentiate allergic rhinitis, viral rhinosinusitis, and chronic sinusitis. Some applications integrate image analysis of nasal cavity photographs or thermal imaging to assess inflammation and airflow patterns. Artificial intelligence-driven symptom checkers can provide individualized risk assessments and recommendations for self-care or medical consultation.

Artificial intelligence also supports self-diagnosis in vestibular disorders. Mobile applications can analyze balance tasks, head movements, and gait patterns using smartphone sensors. Machine learning algorithms detect abnormal vestibular function and differentiate benign paroxysmal positional vertigo from other causes of dizziness. This assists patients in understanding symptom severity and seeking appropriate care.

For throat-related symptoms, artificial intelligence-based text and speech analysis tools evaluate symptom descriptions, swallowing sounds, and cough characteristics. These systems can flag red-flag features suggestive of malignancy or significant structural disease, supporting early referral.

While artificial intelligence-driven self-diagnosis

tools offer substantial benefits, they must be designed with clear limitations and safeguards. ENT symptoms often overlap across conditions, and false reassurance or unnecessary alarm may result from inaccurate assessments. Self-diagnosis tools should emphasize triage and guidance rather than definitive diagnosis, ensuring appropriate clinician oversight and patient education.

Artificial Intelligence for Self-Monitoring in ENT Diseases

Self-monitoring is essential for managing chronic and fluctuating ENT conditions. Many ENT diseases exhibit variable symptom patterns influenced by environmental exposure, infection, stress, sleep quality, and treatment adherence. Artificial intelligence enhances self-monitoring by enabling continuous, objective, and personalized tracking of disease-related parameters.

In hearing and balance disorders, wearable and mobile technologies enable longitudinal monitoring of auditory and vestibular function. Artificial intelligence algorithms analyze repeated hearing tests, speech recognition performance, and balance metrics to detect gradual decline or sudden changes. This supports early intervention and adjustment of hearing aids, vestibular rehabilitation, or medical therapy.

For chronic rhinosinusitis and allergic rhinitis, self-monitoring platforms allow patients to

record nasal symptoms, medication use, and environmental exposures. Artificial intelligence models integrate symptom data with pollen counts, air quality indices, humidity, and temperature to identify individualized triggers and predict exacerbations. This enables proactive symptom management and optimized medication timing.

Sleep-disordered breathing and obstructive sleep apnea are key ENT-related conditions where self-monitoring plays a critical role. Wearable devices and smartphone sensors can capture snoring patterns, breathing irregularities, oxygen saturation, and sleep quality. Artificial intelligence algorithms analyze these data to assess disease severity, monitor treatment adherence, and identify residual symptoms in patients using continuous positive airway pressure therapy or oral appliances.

Voice disorders also benefit from self-monitoring. Patients undergoing voice therapy can record daily voice samples that are analyzed by artificial intelligence models to track improvement, detect strain, and guide exercise intensity. This supports adherence and provides objective feedback outside the clinic.

Self-monitoring is increasingly relevant in head and neck cancer survivorship. Artificial intelligence-assisted platforms allow patients to track swallowing function, speech clarity, pain,

and weight changes. Serial image and audio analysis can detect early signs of recurrence or treatment-related complications, supporting timely clinical evaluation.

Effective self-monitoring systems require intuitive interfaces, minimal user burden, and meaningful feedback. Artificial intelligence models must translate complex data into actionable insights while maintaining data privacy and security. Integration with clinical workflows enhances continuity of care and supports shared decision making.

Artificial Intelligence for Personalized Medicine in ENT Diseases

Personalized medicine seeks to move beyond generalized treatment protocols toward care tailored to individual patient characteristics. ENT diseases are highly heterogeneous, with variability in anatomy, physiology, immune response, genetics, and environmental exposure. Artificial intelligence provides the analytical capacity needed to operationalize personalized medicine in otolaryngology.

Artificial intelligence-driven risk stratification models can identify individuals at higher risk of disease progression, complications, or poor treatment response. In hearing loss, machine learning models integrate audiometric patterns,

age, noise exposure history, and genetic factors to predict progression and guide early intervention strategies. In chronic rhinosinusitis, predictive models can estimate the likelihood of response to medical therapy versus surgical intervention.

Treatment selection and optimization are key components of personalized ENT care. Artificial intelligence can analyze clinical features, imaging findings, biomarker data, and prior treatment outcomes to recommend individualized therapeutic pathways. In obstructive sleep apnea, artificial intelligence models can predict which patients are most likely to benefit from surgical intervention, oral appliances, or positional therapy.

Genomic and molecular data integration is increasingly relevant in head and neck oncology. Artificial intelligence models can analyze tumor genomics, histopathology, imaging, and clinical features to predict prognosis, treatment response, and recurrence risk. This supports personalized treatment planning, including surgery, radiation, chemotherapy, and targeted therapies.

Voice and swallowing rehabilitation also benefit from personalized approaches. Artificial intelligence models can adapt therapy programs based on individual performance, progress, and fatigue patterns. This dynamic personalization improves outcomes and patient engagement.

Microbiome analysis represents an emerging area in ENT personalized medicine. Artificial intelligence can analyze complex microbial datasets from the nasal cavity, sinuses, and oropharynx to identify disease-associated patterns and guide targeted interventions. Integrating microbiome data with clinical and environmental factors supports precision management of inflammatory and infectious ENT diseases.

Artificial Intelligence in Imaging and Signal Analysis for ENT Care

ENT practice relies heavily on imaging and signal-based diagnostics, including endoscopy, radiology, audiology, and voice analysis. Artificial intelligence has significantly advanced automated interpretation in these domains.

In otology, artificial intelligence models analyze otoscopic images to detect middle ear effusion, tympanic membrane perforation, and cholesteatoma. These tools support self-diagnosis, telemedicine, and clinical decision support.

In rhinology, deep learning algorithms analyze endoscopic images and computed tomography scans to assess sinus inflammation, anatomical variation, and disease severity. Automated scoring systems improve consistency and support personalized treatment planning.

In laryngology, artificial intelligence-based video

analysis of laryngoscopy recordings identifies vocal fold lesions, movement abnormalities, and early malignant changes. Acoustic analysis complements imaging by providing non-invasive assessment of vocal function.

Audiology and vestibular diagnostics benefit from artificial intelligence-driven interpretation of audiograms, otoacoustic emissions, and vestibular test results. Automated pattern recognition improves diagnostic accuracy and efficiency.

Ethical, Clinical, and Practical Challenges

The integration of artificial intelligence into self-diagnosis, self-monitoring, and personalized medicine in ENT diseases raises important ethical and practical considerations. Data privacy is a central concern, particularly for audio recordings, facial images, and health data collected in personal environments. Robust security measures, informed consent, and transparent data governance are essential.

Algorithmic bias must be addressed to ensure equitable performance across age groups, languages, accents, and cultural contexts. Voice and speech analysis models, in particular, must account for linguistic diversity to avoid disparities.

Interpretability and trust are critical for clinician

and patient acceptance. Explainable artificial intelligence approaches that clarify decision logic support accountability and shared decision making.

Clinical validation remains essential. Artificial intelligence tools must demonstrate safety, effectiveness, and real-world benefit through rigorous evaluation. Integration into clinical workflows should enhance efficiency without increasing cognitive burden.

Regulatory frameworks and reimbursement models must evolve to support responsible deployment of artificial intelligence in ENT care, particularly for patient-facing applications.

Future Directions and Opportunities

The future of artificial intelligence in ENT diseases lies in deeper integration across self-diagnosis, self-monitoring, and personalized medicine. Advances in multimodal data integration will enable more comprehensive disease models that account for anatomy, physiology, behavior, and environment.

Digital twin technologies may enable simulation of disease progression and treatment outcomes for individual patients. In ENT care, digital twins could optimize surgical planning, rehabilitation strategies, and long-term disease management.

Collaborative development involving patients,

clinicians, engineers, and policymakers will be essential. Patient-centered design, ethical oversight, and interdisciplinary research will ensure that artificial intelligence enhances care while preserving human expertise and compassion.

In conclusion, artificial intelligence offers transformative opportunities for self-diagnosis, self-monitoring, and personalized medicine in ENT diseases. By empowering patients, supporting clinicians, and enabling data-driven precision care, artificial intelligence has the potential to improve outcomes, enhance quality of life, and reduce the global burden of otolaryngological disorders. Responsible and thoughtful integration will determine the extent to which this potential is realized in everyday clinical practice.

9- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN ORTHOPEDIC DISEASES

Background

Orthopedic diseases constitute a major cause of disability, chronic pain, and reduced quality of life worldwide. Disorders affecting bones, joints, muscles, ligaments, and tendons span a wide spectrum, including osteoarthritis, rheumatoid arthritis, osteoporosis, fractures, sports injuries, spinal disorders, and degenerative conditions related to aging. The global burden of musculoskeletal diseases continues to rise due to population aging, sedentary lifestyles, obesity, and increased survival after trauma. Orthopedic conditions often require long-term management, repeated assessments, and individualized therapeutic strategies, placing a substantial burden on healthcare systems and patients alike.

Traditional orthopedic care is largely reactive and episodic, centered on clinic visits, imaging studies, and physical examinations performed at discrete time points. While these approaches remain essential, they often fail to capture disease dynamics between visits, early functional decline, or subtle biomechanical changes that precede

structural damage. Moreover, access to orthopedic specialists and advanced imaging is limited in many regions, leading to delayed diagnosis and suboptimal management. These challenges have driven interest in innovative, scalable solutions that can support earlier detection, continuous monitoring, and more precise treatment planning.

Artificial intelligence has emerged as a powerful enabling technology in orthopedic medicine. Artificial intelligence encompasses machine learning, deep learning, computer vision, and advanced data analytics that allow systems to learn from complex datasets and generate predictive insights. Orthopedic diseases are particularly well suited for artificial intelligence applications because they generate diverse data types, including radiographic images, magnetic resonance imaging scans, motion capture data, wearable sensor signals, electronic health records, and patient-reported outcomes. Artificial intelligence systems can integrate and analyze these data sources at scale, supporting more accurate diagnosis, objective monitoring, and personalized therapeutic decision making.

Three interconnected domains highlight the transformative role of artificial intelligence in orthopedics: self-diagnosis, self-monitoring, and personalized medicine. Self-diagnosis tools enable patients to perform preliminary assessments of musculoskeletal symptoms using

accessible technologies such as smartphones and wearable devices. Self-monitoring systems facilitate continuous tracking of function, pain, mobility, and rehabilitation progress in real-world environments. Personalized medicine leverages artificial intelligence to tailor diagnostics, prognostic models, and treatments to individual anatomy, biomechanics, genetics, and lifestyle factors. Together, these approaches shift orthopedic care toward a proactive, patient-centered, and data-driven paradigm.

This chapter provides an in-depth exploration of artificial intelligence for self-diagnosis, self-monitoring, and personalized medicine in orthopedic diseases. It examines current applications, technological foundations, clinical value, limitations, ethical considerations, and future directions, highlighting how intelligent systems can complement clinical expertise and improve musculoskeletal health outcomes.

Artificial Intelligence for Self-Diagnosis in Orthopedic Diseases

Self-diagnosis in orthopedic diseases is highly relevant because musculoskeletal symptoms are often first recognized by patients in daily life. Pain, stiffness, swelling, instability, reduced range of motion, and functional limitation frequently develop gradually and may be dismissed as benign or age-related. Artificial intelligence-based

self-diagnosis tools provide structured, data-driven support for interpreting these symptoms and identifying when professional evaluation is warranted.

One prominent application of artificial intelligence-driven self-diagnosis is in joint disorders, particularly osteoarthritis. Mobile applications use symptom questionnaires combined with machine learning models to analyze pain patterns, stiffness duration, activity limitations, and risk factors such as age, body mass index, and previous injury. These systems can estimate the likelihood of osteoarthritis and suggest appropriate next steps, including lifestyle modifications, exercises, or clinical consultation.

Image-based self-diagnosis is increasingly feasible through smartphone cameras and portable imaging devices. Artificial intelligence models trained on large datasets of joint photographs and radiographs can analyze images for visible deformities, swelling, alignment abnormalities, or postural asymmetry. While these tools do not replace diagnostic imaging, they can help identify red flags suggestive of inflammatory arthritis, severe degeneration, or acute injury.

Artificial intelligence also supports self-diagnosis in sports and soft tissue injuries. Mobile applications guide users through functional tests and movement tasks while capturing video data. Computer vision algorithms analyze joint angles,

movement symmetry, and stability to identify patterns consistent with ligament injuries, muscle strains, or meniscal damage. This approach is particularly useful for athletes and physically active individuals seeking early guidance after injury.

Spine-related conditions represent another important area for self-diagnosis. Artificial intelligence-driven symptom checkers integrate pain location, radiation patterns, posture, and activity-related triggers to differentiate mechanical back pain from potential nerve compression or inflammatory disease. Some platforms incorporate posture analysis using smartphone sensors to identify abnormal spinal alignment and ergonomic risk factors.

Artificial intelligence-based self-diagnosis also extends to fracture risk assessment. Machine learning models integrate age, sex, medical history, medication use, and lifestyle factors to estimate osteoporosis risk and fracture probability. These tools raise awareness and support early preventive measures in at-risk populations.

While artificial intelligence-driven self-diagnosis tools enhance patient awareness and early detection, they must be implemented with caution. Orthopedic symptoms are often nonspecific and overlapping, and inaccurate self-diagnosis may lead to anxiety or delayed

care. Clear communication regarding limitations, appropriate triage, and clinician involvement is essential for safe and effective use.

Artificial Intelligence for Self-Monitoring in Orthopedic Diseases

Self-monitoring plays a critical role in managing chronic orthopedic conditions and recovery from injury or surgery. Functional status, pain levels, mobility, and rehabilitation adherence vary over time and are influenced by daily activities, treatment compliance, and environmental factors. Artificial intelligence enhances self-monitoring by enabling continuous, objective, and personalized tracking beyond the clinic.

Wearable sensors are central to artificial intelligence-driven self-monitoring in orthopedics. Devices equipped with accelerometers, gyroscopes, and pressure sensors capture detailed information on movement patterns, gait, joint loading, and activity levels. Artificial intelligence algorithms analyze these data streams to quantify functional performance and detect deviations associated with disease progression or injury risk.

In osteoarthritis, self-monitoring platforms track walking speed, step count, joint loading symmetry, and activity tolerance. Machine learning models identify subtle changes that may indicate worsening disease or inadequate

symptom control. This information supports timely treatment adjustments and personalized exercise recommendations.

Postoperative monitoring is another key application. Following joint replacement or ligament reconstruction, artificial intelligence systems analyze wearable sensor data to assess recovery trajectories. Metrics such as range of motion, gait symmetry, and activity progression provide objective indicators of rehabilitation success. Clinicians can identify delayed recovery or complications earlier, enabling targeted intervention.

Self-monitoring is particularly valuable in spine disorders. Wearable posture sensors combined with artificial intelligence algorithms track spinal alignment, sitting duration, and movement variability. These systems provide real-time feedback and long-term insights into posture-related stress and rehabilitation adherence, supporting chronic back pain management.

In sports medicine, artificial intelligence-based self-monitoring helps prevent injury and optimize performance. Athletes use wearable devices to track workload, biomechanics, and fatigue. Machine learning models analyze these data to identify overuse patterns and predict injury risk, supporting individualized training and recovery strategies.

Pain and symptom monitoring are also enhanced through artificial intelligence. Mobile platforms integrate patient-reported pain scores with sensor-derived functional data. Natural language processing can analyze free-text symptom descriptions to detect changes in pain quality or severity. This multidimensional approach provides a more comprehensive understanding of patient experience.

Effective self-monitoring systems must balance data richness with usability. Artificial intelligence models should translate complex measurements into meaningful feedback while minimizing user burden. Integration with clinical workflows enhances continuity of care and supports shared decision making.

Artificial Intelligence for Personalized Medicine in Orthopedic Diseases

Personalized medicine aims to tailor healthcare to individual patient characteristics rather than applying uniform treatment protocols. Orthopedic diseases exhibit significant heterogeneity in anatomy, biomechanics, disease mechanisms, and response to therapy. Artificial intelligence provides the analytical capability to integrate these variables and enable precision orthopedic care.

Risk stratification is a cornerstone of personalized

orthopedics. Artificial intelligence models integrate demographic data, imaging findings, biomechanical measurements, and clinical history to predict disease progression, complication risk, and treatment outcomes. In osteoarthritis, predictive models estimate cartilage loss, pain progression, and likelihood of joint replacement, supporting proactive management.

Treatment selection and optimization are central to personalized orthopedic medicine. Artificial intelligence algorithms analyze imaging features, alignment, bone quality, and functional metrics to guide decisions between conservative management, injection therapy, or surgery. In spine care, predictive models can estimate which patients are most likely to benefit from surgical intervention versus rehabilitation.

Surgical planning benefits substantially from artificial intelligence. Advanced computer vision and deep learning models analyze three-dimensional imaging to assess anatomy, bone morphology, and joint alignment. These insights support personalized implant selection, surgical approach, and alignment targets in joint replacement and spinal surgery.

Rehabilitation personalization is another major application. Artificial intelligence-driven platforms adapt exercise programs based on patient performance, fatigue, pain response, and recovery trajectory. Reinforcement learning

models continuously refine rehabilitation protocols to maximize functional gain while minimizing injury risk.

Genetic and molecular data integration represents an emerging frontier. Artificial intelligence can analyze genetic markers associated with bone density, cartilage metabolism, and inflammation to support personalized prevention and treatment strategies. This approach may improve osteoporosis management and inflammatory arthritis care.

Personalized medicine also extends to lifestyle and behavioral interventions. Artificial intelligence models integrate activity data, sleep patterns, and psychosocial factors to recommend individualized lifestyle modifications that support musculoskeletal health.

Artificial Intelligence in Imaging and Biomechanical Analysis

Imaging is central to orthopedic diagnosis and management. Artificial intelligence has significantly advanced automated interpretation of radiographs, computed tomography scans, and magnetic resonance imaging. Deep learning models detect fractures, joint space narrowing, cartilage defects, and soft tissue injuries with high accuracy and consistency.

Automated fracture detection supports self-diagnosis triage and emergency care,

particularly in resource-limited settings. Artificial intelligence-driven tools can analyze uploaded radiographs and flag suspected fractures for clinical review.

Magnetic resonance imaging analysis benefits from artificial intelligence through automated segmentation of cartilage, ligaments, menisci, and intervertebral discs. These models provide quantitative biomarkers that support personalized treatment planning and disease monitoring.

Biomechanical analysis is another critical domain. Artificial intelligence processes motion capture data and video recordings to assess joint kinematics, muscle activation patterns, and movement efficiency. This supports injury prevention, rehabilitation optimization, and performance enhancement.

Ethical, Clinical, and Practical Considerations

The deployment of artificial intelligence for self-diagnosis, self-monitoring, and personalized medicine in orthopedics raises important ethical and practical issues. Data privacy and security are paramount, particularly given the collection of movement data, images, and health records in non-clinical settings. Robust safeguards and transparent data governance are essential.

Algorithmic bias must be addressed to ensure equitable performance across age groups, body

types, and activity levels. Training datasets should represent diverse populations to avoid disparities in care.

Interpretability and trust are critical for clinician and patient acceptance. Explainable artificial intelligence approaches that clarify how predictions are generated support accountability and informed decision making.

Clinical validation remains essential. Artificial intelligence tools must demonstrate safety, effectiveness, and real-world benefit through rigorous evaluation. Integration into clinical workflows should enhance care without increasing burden.

Regulatory and reimbursement frameworks must evolve to support responsible adoption and sustainability of artificial intelligence in orthopedic practice.

Future Directions and Opportunities

The future of artificial intelligence in orthopedic diseases lies in deeper integration across self-diagnosis, self-monitoring, and personalized medicine. Multimodal data fusion will enable more comprehensive disease models that account for structure, function, behavior, and environment.

Digital twin technologies may enable simulation of disease progression and treatment outcomes for

individual patients. In orthopedics, digital twins could optimize surgical planning, rehabilitation strategies, and long-term disease management.

Collaborative development involving patients, clinicians, engineers, and policymakers will be essential to ensure patient-centered design and ethical implementation.

In conclusion, artificial intelligence offers transformative opportunities for self-diagnosis, self-monitoring, and personalized medicine in orthopedic diseases. By empowering patients, supporting clinicians, and enabling precision care, artificial intelligence has the potential to reduce disability, improve quality of life, and transform musculoskeletal healthcare. Responsible integration will determine the extent to which this potential is realized in everyday orthopedic practice.

10- AI FOR SELF-DIAGNOSIS, SELF-MONITORING, AND PERSONALIZED MEDICINE IN OTHER DISEASES

AI for Self-Diagnosis, Self-Monitoring, and Personalized Medicine in Hematological Malignancy

Background

The adoption of artificial intelligence, machine learning, and deep learning methods is increasingly becoming a computational necessity in hematological oncology, driven by the inherent molecular complexity of blood cancers and the limitations of traditional statistical approaches. Hematological malignancies are profoundly heterogeneous, and many patients are not accurately diagnosed until the disease has progressed to an advanced stage, which substantially limits available treatment options. The ability of artificial intelligence to discern complex, multi layered patterns within high dimensional datasets is particularly well suited to addressing the marked heterogeneity observed in hematological malignancies. The primary challenge extends beyond refining treatment

strategies and includes optimizing the patient pathway to intervention by enabling earlier prediction of malignancy based on antecedent symptoms or routine blood records, an area that remains insufficiently explored. The following sections examine the current state of artificial intelligence applications across self diagnosis, self monitoring, and personalized medicine in hematological oncology.

AI in Self Diagnosis for Hematological Malignancies

Beyond improving existing diagnostic systems, machine learning algorithms demonstrate the capacity to define entirely novel and clinically actionable molecular groupings in complex diseases such as acute myeloid leukemia, which are not readily apparent using conventional statistical methods. Clinicians have long recognized that combinations of mutations are clinically meaningful, for example NPM1 with or without FLT3 ITD, and that the order in which mutations are acquired likely influences prognosis. Artificial intelligence models are therefore essential for integrating this high dimensional and ordered complexity, allowing progress beyond the traditional limitations of single lesion genomic analysis.

Artificial intelligence applications for diagnosis exist along a broad spectrum, ranging from high

precision systems used internally within clinical laboratories to lower accuracy tools utilized by the general public for self assessment. Deep learning has rapidly emerged as a critical approach for automating the evaluation of pathology specimens, as its multi layered neural network architecture enables the learning of intricate visual and spatial patterns from digitized samples, resulting in highly accurate predictions. This capability is particularly important for reducing reliance on manual interpretation and mitigating the substantial interpersonal variability that often characterizes human assessment of complex datasets, such as next generation flow cytometry results.

High throughput technologies, including next generation sequencing and single cell RNA sequencing, generate data volumes that frequently exceed human analytical capacity. Comprehensive classification of hematological malignancies, which integrates information from morphology, immunology, and molecular biology, is therefore optimized through the use of artificial intelligence. Artificial intelligence is fundamentally required to process these data volumes, enabling the identification of underlying tumor heterogeneity and the discovery of new potential therapeutic targets.

In contrast, the performance of artificial intelligence driven symptom checker applications

designed for public self diagnosis remains markedly limited. Comparative analyses demonstrate a substantial performance gap between these consumer facing tools and professional clinical judgment. Average diagnostic accuracy for symptom checker applications has been reported to be low, whereas specialist physicians achieve substantially higher accuracy. Even the most accurate publicly available applications demonstrate only moderate diagnostic performance. This pronounced discrepancy suggests that simple text based symptom input is insufficient to capture the inherent complexity and heterogeneity of hematological malignancy presentations. Such low precision introduces significant public health risks, including false reassurance, delayed clinical presentation, and further deterioration of already limited treatment prospects.

AI in Self Monitoring for Hematological Malignancies

Continuous monitoring represents a pivotal transition from episodic clinical evaluations to real time longitudinal data collection, which is particularly beneficial in the management of the acute and fluctuating clinical course characteristic of hematological malignancy treatment. The integration of artificial intelligence driven wearable technologies, including smartwatches, biosensors, fitness trackers, and smart clothing,

enables continuous and non invasive monitoring of a wide range of physiological markers and vital parameters.

This technological shift provides a time efficient and comprehensive depiction of a patient's disease status and treatment response, allowing clinicians to tailor therapeutic strategies based on real time insights and to detect complications at an early stage. Wearable technologies capture digital indicators of patient status that correlate closely with complex clinical assessments. Measures such as daily step count, walking cadence, postural transitions, and fatigue serve as quantifiable indicators of frailty and overall well being. Artificial intelligence algorithms analyze these continuous data streams to identify patterns associated with patient outcomes. For example, reduced step counts have been associated with increased pain burden and poorer physical health among patients undergoing hematopoietic cell transplantation.

Machine learning models applied to continuous smartwatch data have demonstrated exceptional performance in predicting critical clinical events, including short term mortality in patients with advanced cancer. The combination of wearable derived data with clinical assessments can also assist in identifying patients at increased risk of poor response to chemotherapy, enabling timely interventions and optimization of treatment

dosing.

The role of artificial intelligence in remote monitoring further extends to advanced biochemical detection. Novel fluorometric aptasensors are capable of detecting key biomarkers, such as lysozyme associated with specific leukemias and adenosine triphosphate as an indicator of cell viability. The multifunctional nature of these biosensing platforms often results in overlapping fluorescence spectra, which complicates accurate simultaneous analysis. Artificial intelligence techniques, including least squared support vector machine methods, are used to deconvolute overlapping spectra, thereby significantly improving accuracy, selectivity, and sensitivity in biological samples.

Finally, the incorporation of electronic patient reported outcomes into machine learning based risk models contributes to a more human centered approach to personalized oncology prediction by capturing subjective experiences such as symptom burden and quality of life. Integrating these patient reported data requires standardized data collection methodologies and responsive technological infrastructure to overcome existing barriers.

AI in Personalized Medicine for Hematological Malignancies

Machine learning models have demonstrated

superior predictive performance compared with traditional group based staging systems, such as the International Staging System for multiple myeloma, and have shown reproducibility in real world clinical settings by providing individualized risk predictions. In precursor conditions such as monoclonal gammopathy of undetermined significance, machine learning models are able to robustly predict progression to overt malignancy, including multiple myeloma or Waldenström macroglobulinemia, using a compact set of clinically relevant features, thereby supporting earlier clinical intervention.

Furthermore, machine learning is capable of defining novel and clinically meaningful molecular subgroups in complex diseases such as acute myeloid leukemia. Unsupervised analytical approaches have identified distinct genomic clusters with significantly different overall survival outcomes, highlighting the prognostic value of artificial intelligence driven stratification. Artificial intelligence models are particularly well suited for computationally integrating complex combinatorial mutation patterns and the sequence of mutation acquisition, variables that are difficult to address using conventional statistical techniques.

Accurate prediction of individual tumor response requires multi omics integration, involving the systematic analysis and cross validation of

multiple biological layers, including genomics and transcriptomics, to generate a comprehensive molecular profile. Integrating these layers reveals complex regulatory networks and improves drug response prediction beyond what is achievable with single gene analyses. Graph neural networks further enhance predictive capacity by modeling the intricate biological structures and regulatory interactions that link different omic layers, enabling *in silico* simulation of treatment responses.

Advanced deep learning architectures are essential for processing these highly complex datasets. For example, drug sensitivity prediction models integrate multiple omics data types, such as RNA sequencing, copy number variation, and DNA methylation, to achieve high accuracy in predicting sensitivity to both targeted therapies and conventional chemotherapeutic agents. To improve interpretability, explainable deep learning frameworks have been developed that can accurately predict treatment responses across a wide range of drugs in previously unseen tumor samples. Importantly, the use of explainable artificial intelligence techniques, such as layer wise relevance propagation, allows identification of the contribution of individual genes to predicted drug responses. This transparency enhances clinical trust and actively supports the discovery of novel biological mechanisms,

including the identification of repurposed drugs with previously unrecognized anticancer potential.

Translational Challenges and Future Architectures

Despite impressive internal performance metrics, the translation of artificial intelligence models into reliable clinical practice is hindered by significant methodological shortcomings. A systematic review of leukemia prediction models revealed a high risk of bias affecting the majority of studies reviewed, primarily driven by inadequate data handling strategies and suboptimal validation procedures. In addition, the absence of external validation remains a widespread problem, with a substantial proportion of prediction models failing to perform this essential step. When external validation is conducted, predictive performance frequently deteriorates markedly, with observed reductions in discriminatory ability, underscoring the limited generalizability of many proposed models. To mitigate these sources of bias, the application of frozen normalization methods for test datasets has been shown to substantially improve model robustness when compared with conventional normalization approaches, particularly in heterogeneous clinical environments.

The implementation of big data analytics in

hematological oncology is also fundamentally constrained by the imperative of protecting patient privacy. Addressing the tension between the extensive data requirements of powerful deep learning models and the strict obligations of patient data confidentiality is therefore a critical challenge. Federated learning offers a necessary and promising architectural solution to this problem by enabling collaborative model training across multiple decentralized institutions without the exchange of raw patient level data. Through this approach, individual institutions retain control over sensitive information while still contributing to the development of shared, high performance models. Federated learning frameworks have already been successfully applied to the multi class classification of acute lymphoblastic leukemia subtypes, demonstrating high accuracy and robust performance while incorporating differential privacy mechanisms to ensure compliance with data protection regulations.

The convergence of these artificial intelligence driven approaches ultimately leads to the development of the digital twin concept, defined as a dynamic and virtual representation of an individual patient. In the context of hematological malignancies, digital twin models enable *in silico* testing of treatment strategies, accelerate biomarker discovery, and

function as continuously learning systems capable of simulating individualized therapeutic responses. By integrating longitudinal clinical data, molecular profiles, and treatment outcomes, digital twins offer a powerful framework for personalized medicine and translational research, supporting more precise, adaptive, and patient centered decision making in future clinical practice.

REFERENCES

1. Mentzou A, Rogers A, Carvalho E, Daly A, Malone M, Kerasidou X. Artificial Intelligence in Digital Self-Diagnosis Tools: A Narrative Overview of Reviews. *Mayo Clin Proc Digit Health.* 2025;3(3):100242.
2. Wimbarti S, Kairupan BHR, Tallei TE. Critical review of self-diagnosis of mental health conditions using artificial intelligence. *Int J Ment Health Nurs.* 2024;33(2):344-58.
3. Abdelhalim H, Berber A, Lodi M, Jain R, Nair A, Pappu A, et al. Artificial Intelligence, Healthcare, Clinical Genomics, and Pharmacogenomics Approaches in Precision Medicine. *Front Genet.* 2022;13:929736.
4. Adam KM, Ali EW, Elangeeb ME, Abuagla HA, Elamin BK, Ahmed EM, et al. Intelligent Care: A Scientometric Analysis of Artificial Intelligence in Precision Medicine. *Med Sci (Basel).* 2025;13(2).
5. Ajibade VM, Madu CS. The Integration of Artificial Intelligence Into Precision Medicine for Neuro-Oncology: Ethical, Clinical, and Nursing Implications in Immunotherapy Care. *Cureus.* 2025;17(5):e85024.
6. Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, et al. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. *Rheumatol Int.* 2023;43(11):1965-82.
7. Alshehri ZS. Integrating artificial intelligence with small molecule therapeutics and precision medicine for neurochemical understanding of Alzheimer's diseases. *Neuroscience.* 2025;586:44-57.
8. Álvarez-Machancoses Ó, DeAndrés Galiana EJ, Cernea A, Fernández de la Viña J, Fernández-Martínez JL. On the Role of Artificial Intelligence in Genomics to Enhance Precision Medicine. *Pharmgenomics Pers Med.* 2020;13:105-19.
9. Arimura H, Soufi M, Kamezawa H, Ninomiya K, Yamada M. Radiomics with artificial intelligence for precision medicine in radiation therapy. *J Radiat Res.* 2019;60(1):150-7.
10. Aryal S, Manandhar I, Mei X, Yeoh BS, Tummala R, Saha P, et al. Combating hypertension beyond genome-wide association studies: Microbiome and artificial intelligence as opportunities for precision medicine. *Camb Prism Precis Med.* 2023;1:e26.
11. Balkhair O, Albalushi H. Artificial Intelligence in Organoid-Based Disease Modeling: A New Frontier in Precision Medicine. *Biomimetics (Basel).* 2025;10(12).

12. Barberis E, Khoso S, Sica A, Falasca M, Gennari A, Dondero F, et al. Precision Medicine Approaches with Metabolomics and Artificial Intelligence. *Int J Mol Sci.* 2022;23(19).
13. Bhinder B, Gilvary C, Madhukar NS, Elemento O. Artificial Intelligence in Cancer Research and Precision Medicine. *Cancer Discov.* 2021;11(4):900-15.
14. Boniolo F, Dorigatti E, Ohnmacht AJ, Saur D, Schubert B, Menden MP. Artificial intelligence in early drug discovery enabling precision medicine. *Expert Opin Drug Discov.* 2021;16(9):991-1007.
15. Bonkhoff AK, Grefkes C. Precision medicine in stroke: towards personalized outcome predictions using artificial intelligence. *Brain.* 2022;145(2):457-75.
16. Caballero Mateos AM, Cañas de la Fuente GA, Gros B. Paradigm Shift in Inflammatory Bowel Disease Management: Precision Medicine, Artificial Intelligence, and Emerging Therapies. *J Clin Med.* 2025;14(5).
17. Carini C, Seyhan AA. Tribulations and future opportunities for artificial intelligence in precision medicine. *J Transl Med.* 2024;22(1):411.
18. Ceccato HD, Silva T, Genaro LM, Silva JF, de Souza WM, Oliveira PSP, et al. Artificial intelligence use for precision medicine in inflammatory bowel disease: a systematic review. *Am J Transl Res.* 2025;17(1):28-46.
19. Chang L, Liu J, Zhu J, Guo S, Wang Y, Zhou Z, et al. Advancing precision medicine: the transformative role of artificial intelligence in immunogenomics, radiomics, and pathomics for biomarker discovery and immunotherapy optimization. *Cancer Biol Med.* 2025;22(1):33-47.
20. Chen M, Copley SJ, Viola P, Lu H, Aboagye EO. Radiomics and artificial intelligence for precision medicine in lung cancer treatment. *Semin Cancer Biol.* 2023;93:97-113.
21. Chen YM, Hsiao TH, Lin CH, Fann YC. Unlocking precision medicine: clinical applications of integrating health records, genetics, and immunology through artificial intelligence. *J Biomed Sci.* 2025;32(1):16.
22. Chen ZH, Lin L, Wu CF, Li CF, Xu RH, Sun Y. Artificial intelligence for assisting cancer diagnosis and treatment in the era of precision medicine. *Cancer Commun (Lond).* 2021;41(11):1100-15.
23. Chowdhury MA, Zhang JJ, Rizk R, Chen WCW. Stem cell therapy for heart failure in the clinics: new perspectives in the era of precision medicine and artificial intelligence. *Front Physiol.* 2023;14:1344885.
24. Cong Y, Endo T. A Quadruple Revolution: Deciphering Biological Complexity with Artificial Intelligence, Multiomics, Precision Medicine, and Planetary Health. *Omics.* 2024;28(6):257-60.

25. Corti C, Cobanaj M, Dee EC, Criscitiello C, Tolaney SM, Celi LA, et al. Artificial intelligence in cancer research and precision medicine: Applications, limitations and priorities to drive transformation in the delivery of equitable and unbiased care. *Cancer Treat Rev.* 2023;112:102498.
26. Duci M, Verlato G, Moschino L, Uccheddu F, Fascetti-Leon F. Advances in Artificial Intelligence and Machine Learning for Precision Medicine in Necrotizing Enterocolitis and Neonatal Sepsis: A State-of-the-Art Review. *Children (Basel).* 2025;12(4).
27. Fang C, Zhou P, Zhang X, He Y, Yang Q. Artificial intelligence in oncology drug development and management: a precision medicine perspective. *Front Oncol.* 2025;15:1609827.
28. Fea AM, Ricardi F, Novarese C, Cimorosi F, Vallino V, Boscia G. Precision Medicine in Glaucoma: Artificial Intelligence, Biomarkers, Genetics and Redox State. *Int J Mol Sci.* 2023;24(3).
29. Fogli S, Barberis A, Re MD, Crucitta S, Ruglioni M, Luculli G, et al. Artificial intelligence-based pharmacological approach in non-small cell lung cancer in the precision medicine era. *Cancer Treat Res Commun.* 2025;45:101023.
30. Gerussi A, Scaravaglio M, Cristoferi L, Verda D, Milani C, De Bernardi E, et al.

- Artificial intelligence for precision medicine in autoimmune liver disease. *Front Immunol.* 2022;13:966329.
31. Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, et al. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. *Adv Sci (Weinh).* 2025;12(2):e2408069.
32. Gupta NS, Kumar P. Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine. *Comput Biol Med.* 2023;162:107051.
33. Hagen J, Hornung L, Barham W, Mukhopadhyay S, Bess A, Contrera K, et al. Artificial Intelligence in Head and Neck Cancer: Towards Precision Medicine. *Cancers (Basel).* 2025;17(18).
34. Hajirasouliha I, Elemento O. Precision medicine and artificial intelligence: overview and relevance to reproductive medicine. *Fertil Steril.* 2020;114(5):908-13.
35. Hamamoto R, Komatsu M, Takasawa K, Asada K, Kaneko S. Epigenetics Analysis and Integrated Analysis of Multiomics Data, Including Epigenetic Data, Using Artificial Intelligence in the Era of Precision Medicine. *Biomolecules.* 2019;10(1).
36. Hamamoto R, Suvarna K, Yamada M, Kobayashi K, Shinkai N, Miyake M, et al.

Application of Artificial Intelligence Technology in Oncology: Towards the Establishment of Precision Medicine. *Cancers (Basel)*. 2020;12(12).

37. He X, Liu X, Zuo F, Shi H, Jing J. Artificial intelligence-based multi-omics analysis fuels cancer precision medicine. *Semin Cancer Biol*. 2023;88:187-200.

38. Higgins H, Nakhla A, Lotfalla A, Khalil D, Doshi P, Thakkar V, et al. Recent Advances in the Field of Artificial Intelligence for Precision Medicine in Patients with a Diagnosis of Metastatic Cutaneous Melanoma. *Diagnostics (Basel)*. 2023;13(22).

39. Huang R, Jin X, Liu Q, Bai X, Karako K, Tang W, et al. Artificial intelligence in colorectal cancer liver metastases: From classification to precision medicine. *Biosci Trends*. 2025;19(2):150-64.

40. Infante T, Cavaliere C, Punzo B, Grimaldi V, Salvatore M, Napoli C. Radiogenomics and Artificial Intelligence Approaches Applied to Cardiac Computed Tomography Angiography and Cardiac Magnetic Resonance for Precision Medicine in Coronary Heart Disease: A Systematic Review. *Circ Cardiovasc Imaging*. 2021;14(12):1133-46.

41. Jafar A, Pasqua MR. Postprandial glucose-management strategies in type 1 diabetes: Current approaches and prospects with precision medicine and artificial intelligence. *Diabetes Obes Metab*.

2024;26(5):1555-66.

42. Janitri V, ArulJothi KN, Ravi Mythili VM, Singh SK, Prasher P, Gupta G, et al. The roles of patient-derived xenograft models and artificial intelligence toward precision medicine. *MedComm* (2020). 2024;5(10):e745.

43. Kedar P, Bhattacharya S, Kanugo A, Prajapati BG. Novel Strategies for the Treatment of Lung Cancer: An In-depth Analysis of the Use of Immunotherapy, Precision Medicine, and Artificial Intelligence to Improve Prognoses. *Curr Med Chem*. 2025;32(35):7752-76.

44. Khera R, Asnani AH, Krive J, Addison D, Zhu H, Vasbinder A, et al. Artificial Intelligence to Enhance Precision Medicine in Cardio-Oncology: A Scientific Statement From the American Heart Association. *Circ Genom Precis Med*. 2025;18(2):e000097.

45. Kolaszyńska O, Lorkowski J. Artificial Intelligence in Cardiology and Atherosclerosis in the Context of Precision Medicine: A Scoping Review. *Appl Bionics Biomech*. 2024;2024:2991243.

46. Lai B, Fu J, Zhang Q, Deng N, Jiang Q, Peng J. Artificial intelligence in cancer pathology: Challenge to meet increasing demands of precision medicine. *Int J Oncol*. 2023;63(3).

47. Leckie J, Wu S, Standell T, Yokota T. Artificial Intelligence-Driven Design of

Antisense Oligonucleotides for Precision Medicine in Neuromuscular Disorders. *Genes (Basel)*. 2025;16(12).

48. Li L, Zhang W, Tu X, Pang J, Lai IF, Jin C, et al. Application of Artificial Intelligence in Precision Medicine for Diabetic Macular Edema. *Asia Pac J Ophthalmol (Phila)*. 2023;12(5):486-94.

49. Liao J, Li X, Gan Y, Han S, Rong P, Wang W, et al. Artificial intelligence assists precision medicine in cancer treatment. *Front Oncol*. 2022;12:998222.

50. Lin A, Che C, Jiang A, Qi C, Glaviano A, Zhao Z, et al. Protein Spatial Structure Meets Artificial Intelligence: Revolutionizing Drug Synergy-Antagonism in Precision Medicine. *Adv Sci (Weinh)*. 2025;12(33):e07764.

51. Lin B, Ma Y, Wu S. Multi-Omics and Artificial Intelligence-Guided Data Integration in Chronic Liver Disease: Prospects and Challenges for Precision Medicine. *Omics*. 2022;26(8):415-21.

52. Moingeon P, Kuenemann M, Guedj M. Artificial intelligence-enhanced drug design and development: Toward a computational precision medicine. *Drug Discov Today*. 2022;27(1):215-22.

53. Moschetti M, Venezia M, Giacomarra M, Marsana EM, Zizzo C, Duro G, et al. Highlights of Precision Medicine, Genetics, Epigenetics and Artificial Intelligence in Pompe Disease. *Int J Mol Sci*. 2025;26(2).

54. Mumtaz H, Saqib M, Jabeen S, Muneeb M, Mughal W, Sohail H, et al. Exploring alternative approaches to precision medicine through genomics and artificial intelligence - a systematic review. *Front Med (Lausanne)*. 2023;10:1227168.

55. Naik K, Goyal RK, Foschini L, Chak CW, Thielscher C, Zhu H, et al. Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine. *Clin Pharmacol Ther*. 2024;115(4):673-86.

56. Nam Y, Kim J, Jung SH, Woerner J, Suh EH, Lee DG, et al. Harnessing Artificial Intelligence in Multimodal Omics Data Integration: Paving the Path for the Next Frontier in Precision Medicine. *Annu Rev Biomed Data Sci*. 2024;7(1):225-50.

57. Nayarisseni A, Khandelwal R, Tanwar P, Madhavi M, Sharma D, Thakur G, et al. Artificial Intelligence, Big Data and Machine Learning Approaches in Precision Medicine & Drug Discovery. *Curr Drug Targets*. 2021;22(6):631-55.

58. Negahi A, Khosravi-Mashizi M, Najdsepas H, Negahban H, Mousavi-Beni SA, Shahrokh Damavand R, et al. Precision Medicine and Artificial Intelligence in Next-Generation Cancer Surgery: A Comprehensive Analysis of Clinical Applications, Therapeutic Outcomes, and Implementation Strategies. *Asian Pac J Cancer Prev*. 2025;26(12):4299-312.

59. Noortman WA, Vriens D, Grootjans W, Tao Q, de Geus-Oei LF, Van Velden FH. Nuclear medicine radiomics in precision medicine: why we can't do without artificial intelligence. *Q J Nucl Med Mol Imaging*. 2020;64(3):278-90.

60. Okpete UE, Byeon H. Challenges and prospects in bridging precision medicine and artificial intelligence in genomic psychiatric treatment. *World J Psychiatry*. 2024;14(8):1148-64.

61. Pammi M, Aghaeepour N, Neu J. Multiomics, artificial intelligence, and precision medicine in perinatology. *Pediatr Res*. 2023;93(2):308-15.

62. Philip AK, Samuel BA, Bhatia S, Khalifa SAM, El-Seedi HR. Artificial Intelligence and Precision Medicine: A New Frontier for the Treatment of Brain Tumors. *Life (Basel)*. 2022;13(1).

63. Pinton P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion. *Ann Med*. 2023;55(2):2300670.

64. Piroozkhah M, Kahangi MF, Asri N, Piroozkhah M, Moradi N, Nazemalhosseini-Mojarad E, et al. Toward Precision Medicine in Celiac Disease: Emerging Roles of Multiomics and Artificial Intelligence. *Anal Cell Pathol (Amst)*. 2025;2025:6570955.

65. Ray S, Bhattacharya P, Mattar EA, Mukhopadhyay A. Coalition of explainable artificial intelligence and quantum computing in precision medicine. *Comput Struct Biotechnol J*. 2025;27:5234-51.

66. Saba L, Maindarker M, Johri AM, Mantella L, Laird JR, Khanna NN, et al. UltraAIGenomics: Artificial Intelligence-Based Cardiovascular Disease Risk Assessment by Fusion of Ultrasound-Based Radiomics and Genomics Features for Preventive, Personalized and Precision Medicine: A Narrative Review. *Rev Cardiovasc Med*. 2024;25(5):184.

67. Sadée C, Testa S, Barba T, Hartmann K, Schuessler M, Thieme A, et al. Medical digital twins: enabling precision medicine and medical artificial intelligence. *Lancet Digit Health*. 2025;7(7):100864.

68. Sahoo K, Lingasamy P, Khatun M, Sudhakaran SL, Salumets A, Sundararajan V, et al. Artificial Intelligence in cancer epigenomics: a review on advances in pan-cancer detection and precision medicine. *Epigenetics Chromatin*. 2025;18(1):35.

69. Sami A, Ashraf R, Nisar S, Mustehsan ZH, Javed MA, Ozsahin DU, et al. A comprehensive narrative review on precision medicine approach to hypertension: exploring the role of

genetics, epigenetics, microbiome, and artificial intelligence. *J Health Popul Nutr.* 2025;44(1):394.

70. Santos MK, Ferreira Júnior JR, Wada DT, Tenório APM, Barbosa MHN, Marques PMA. Artificial intelligence, machine learning, computer-aided diagnosis, and radiomics: advances in imaging towards to precision medicine. *Radiol Bras.* 2019;52(6):387-96.

71. Saxena S, Jena B, Gupta N, Das S, Sarmah D, Bhattacharya P, et al. Role of Artificial Intelligence in Radiogenomics for Cancers in the Era of Precision Medicine. *Cancers (Basel).* 2022;14(12).

72. Sciacotta R, Barone P, Murdaca G, Fazio M, Stagno F, Gangemi S, et al. Decoding Immunodeficiencies with Artificial Intelligence: A New Era of Precision Medicine. *Biomedicines.* 2025;13(8).

73. Selvaraj C, Cho WC, Langeswaran K, Alothaim AS, Vijayakumar R, Jayaprakashvel M, et al. Artificial intelligence in cancer care: revolutionizing diagnosis, treatment, and precision medicine amid emerging challenges and future opportunities. *3 Biotech.* 2025;15(10):355.

74. Șerban M, Toader C, Covache-Busuioc RA. CRISPR and Artificial Intelligence in Neuroregeneration: Closed-Loop Strategies for Precision Medicine, Spinal Cord Repair, and Adaptive Neuro-Oncology. *Int J Mol Sci.* 2025;26(19).

75. Shao Y, Lv X, Ying S, Guo Q. Artificial Intelligence-Driven Precision Medicine: Multi-Omics and Spatial Multi-Omics Approaches in Diffuse Large B-Cell Lymphoma (DLBCL). *Front Biosci (Landmark Ed).* 2024;29(12):404.

76. Shuaat S, Riaz M, Jacobs R. Synergy between artificial intelligence and precision medicine for computer-assisted oral and maxillofacial surgical planning. *Clin Oral Investig.* 2023;27(3):897-906.

77. Singh AV, Chandrasekar V, Paudel N, Laux P, Luch A, Gemmati D, et al. Integrative toxicogenomics: Advancing precision medicine and toxicology through artificial intelligence and OMICs technology. *Biomed Pharmacother.* 2023;163:114784.

78. Sinigaglia M, Assi T, Besson FL, Ammari S, Edjlali M, Feltus W, et al. Imaging-guided precision medicine in glioblastoma patients treated with immune checkpoint modulators: research trend and future directions in the field of imaging biomarkers and artificial intelligence. *EJNMMI Res.* 2019;9(1):78.

79. Srivastav AK, Mishra MK, Lillard JW, Jr., Singh R. Transforming Pharmacogenomics and CRISPR Gene Editing with the Power of Artificial Intelligence for Precision Medicine. *Pharmaceutics.* 2025;17(5).

80. Subramanian M, Wojtusciszyn A, Favre L,

Boughorbel S, Shan J, Letaief KB, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. *J Transl Med.* 2020;18(1):472.

81. Sun Y, Guo X, Liu X, Liu H, Wang X. Advances in artificial intelligence-based radiogenomics for lung cancer precision medicine. *Prog Biomed Eng (Bristol).* 2025;8(1).

82. Talyshinskii A, Hameed BMZ, Ravinder PP, Naik N, Randhawa P, Shah M, et al. Catalyzing Precision Medicine: Artificial Intelligence Advancements in Prostate Cancer Diagnosis and Management. *Cancers (Basel).* 2024;16(10).

83. Theodros E, Nagaraju GP. Artificial Intelligence and Precision Medicine: Outcome of Immunotherapy in Hepatocellular Carcinoma. *Crit Rev Immunol.* 2022;42(6):1-8.

84. Tong L, Shi W, Isgut M, Zhong Y, Lais P, Gloster L, et al. Integrating Multi-Omics Data With EHR for Precision Medicine Using Advanced Artificial Intelligence. *IEEE Rev Biomed Eng.* 2024;17:80-97.

85. Tunali I, Gillies RJ, Schabath MB. Application of Radiomics and Artificial Intelligence for Lung Cancer Precision Medicine. *Cold Spring Harb Perspect Med.* 2021;11(8).

86. Uddin M, Wang Y, Woodbury-Smith M. Artificial intelligence for precision medicine in neurodevelopmental disorders. *NPJ Digit Med.*

2019;2:112.

87. Viganò L, Jayakody Arachchige VS, Fiz F. Is precision medicine for colorectal liver metastases still a utopia? New perspectives by modern biomarkers, radiomics, and artificial intelligence. *World J Gastroenterol.* 2022;28(6):608-23.

88. Visco V, Ferruzzi GJ, Nicastro F, Virtuoso N, Carrizzo A, Galasso G, et al. Artificial Intelligence as a Business Partner in Cardiovascular Precision Medicine: An Emerging Approach for Disease Detection and Treatment Optimization. *Curr Med Chem.* 2021;28(32):6569-90.

89. Wang J, Pan J, Luan F, Shi H, Xie Y, Zhao C, et al. From molecular chaos to precision medicine in the treatment of cardiac hypertrophy: A rational use of natural products by integrating artificial intelligence and multi-omics data. *Pharmacol Res.* 2025;219:107898.

90. Wang Y, Zhang W, Liu X, Tian L, Li W, He P, et al. Artificial intelligence in precision medicine for lung cancer: A bibliometric analysis. *Digit Health.* 2025;11:20552076241300229.

91. Wei J, Jiang H, Zhou Y, Tian J, Furtado FS, Catalano OA. Radiomics: A radiological evidence-based artificial intelligence technique to facilitate personalized precision medicine in hepatocellular carcinoma. *Dig Liver Dis.* 2023;55(7):833-47.

92. Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, et al. Translating cancer

genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. *Hum Genet.* 2019;138(2):109-24.

93. Xu Z, Li W, Dong X, Chen Y, Zhang D, Wang J, et al. Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. *Clin Chim Acta.* 2024;559:119686.

94. Yokoyama K. [Artificial intelligence-guided precision medicine in hematological disorders]. *Rinsho Ketsueki.* 2020;61(5):554-63.

95. Zack M, Stupichev DN, Moore AJ, Slobodchikov ID, Sokolov DG, Trifonov IF, et al. Artificial Intelligence and Multi-Omics in Pharmacogenomics: A New Era of Precision Medicine. *Mayo Clin Proc Digit Health.* 2025;3(3):100246.

96. Zeng S, Qing Q, Xu W, Yu S, Zheng M, Tan H, et al. Personalized anesthesia and precision medicine: a comprehensive review of genetic factors, artificial intelligence, and patient-specific factors. *Front Med (Lausanne).* 2024;11:1365524.

97. Zheng Y, Li H, Wang R, Jiang CS, Zhao YT. Multi-model applications and cutting-edge advancements of artificial intelligence in hepatology in the era of precision medicine. *World J Gastroenterol.* 2025;31(39):111323.

98. Abosheisha M, Nasr E, Abdellatif M, Swealeem A, Ammar A, Hasan MAS, et al. The Future of Enhanced Recovery After Surgery in General Surgery: Integrating Artificial Intelligence, Personalized Care, and Technological Advances. *Cureus.* 2025;17(9):e91528.

99. Agrawal K, Goktas P, Kumar N, Leung MF. Artificial intelligence in personalized nutrition and food manufacturing: a comprehensive review of methods, applications, and future directions. *Front Nutr.* 2025;12:1636980.

100. Ahn JS, Shin S, Yang SA, Park EK, Kim KH, Cho SI, et al. Artificial Intelligence in Breast Cancer Diagnosis and Personalized Medicine. *J Breast Cancer.* 2023;26(5):405-35.

101. Al Saiegh F, Munoz A, Velagapudi L, Theofanis T, Suryadevara N, Patel P, et al. Patient and procedure selection for mechanical thrombectomy: Toward personalized medicine and the role of artificial intelligence. *J Neuroimaging.* 2022;32(5):798-807.

102. Alkhodari M, Xiong Z, Khandoker AH, Hadjileontiadis LJ, Leeson P, Lapidaire W. The role of artificial intelligence in hypertensive disorders of pregnancy: towards personalized healthcare. *Expert Rev Cardiovasc Ther.* 2023;21(7):531-43.

103. Ardelean A, Balta DF, Neamtu C, Neamtu AA, Rosu M, Totolici B. Personalized and predictive strategies for diabetic foot ulcer prevention and therapeutic management: potential improvements through introducing

Artificial Intelligence and wearable technology. *Med Pharm Rep.* 2024;97(4):419-28.

104. Attoh-Mensah E, Boujut A, Desmons M, Perrochon A. Artificial intelligence in personalized rehabilitation: current applications and a SWOT analysis. *Front Digit Health.* 2025;7:1606088.

105. Ayasa Y, Alajrami D, Idkedeck M, Tahayneh K, Akar FA. The Impact of Artificial Intelligence on Lung Cancer Diagnosis and Personalized Treatment. *Int J Mol Sci.* 2025;26(17).

106. Balamurugan J, Adeyeye SAO. Artificial Intelligence in Nutrigenomics: A Critical Review on Functional Food Insights and Personalized Nutrition Pathways. *J Hum Nutr Diet.* 2026;39(1):e70200.

107. Baldi S, Sarikaya D, Lotti S, Cuffaro F, Fink D, Colombini B, et al. From traditional to artificial intelligence-driven approaches: Revolutionizing personalized and precision nutrition in inflammatory bowel disease. *Clin Nutr ESPEN.* 2025;68:106-17.

108. Bednarek A, Gumięzna K, Baruś P, Kochman J, Tomania M. Artificial Intelligence in Imaging for Personalized Management of Coronary Artery Disease. *J Clin Med.* 2025;14(2).

109. Belge Bilgin G, Bilgin C, Burkett BJ, Orme JJ, Childs DS, Thorpe MP, et al. Theranostics and artificial intelligence: new frontiers in personalized medicine. *Theranostics.*

2024;14(6):2367-78.

110. Brosch-Lenz J, Yousefirizi F, Zukotynski K, Beauregard JM, Gaudet V, Saboury B, et al. Role of Artificial Intelligence in Theranostics:: Toward Routine Personalized Radiopharmaceutical Therapies. *PET Clin.* 2021;16(4):627-41.

111. Cai Y, Chen R, Gao S, Li W, Liu Y, Su G, et al. Artificial intelligence applied in neoantigen identification facilitates personalized cancer immunotherapy. *Front Oncol.* 2022;12:1054231.

112. Casarin S, Haelterman NA, Machol K. Transforming personalized chronic pain management with artificial intelligence: A commentary on the current landscape and future directions. *Exp Neurol.* 2024;382:114980.

113. Cè M, Irmici G, Foschini C, Danesini GM, Falsitta LV, Serio ML, et al. Artificial Intelligence in Brain Tumor Imaging: A Step toward Personalized Medicine. *Curr Oncol.* 2023;30(3):2673-701.

114. Cesario A, D'Oria M, Bove F, Privitera G, Boškoski I, Pedicino D, et al. Personalized Clinical Phenotyping through Systems Medicine and Artificial Intelligence. *J Pers Med.* 2021;11(4).

115. Chang L, Li H, Wu W, Liu X, Yan J, Chen Z, et al. Applications of artificial intelligence in non-small cell lung cancer: from precision diagnosis to personalized prognosis and therapy. *J Transl Med.* 2025.

116. Chaparro-Cárdenas SL, Ramirez-Bautista JA, Terven J, Córdova-Esparza DM, Romero-Gonzalez JA, Ramírez-Pedraza A, et al. A Technological Review of Digital Twins and Artificial Intelligence for Personalized and Predictive Healthcare. *Healthcare (Basel)*. 2025;13(14).

117. Chapla D, Chorya HP, Ishfaq L, Khan A, Vr S, Garg S. An Artificial Intelligence (AI)-Integrated Approach to Enhance Early Detection and Personalized Treatment Strategies in Lung Cancer Among Smokers: A Literature Review. *Cureus*. 2024;16(8):e66688.

118. Cobanaj M, Corti C, Dee EC, McCullum L, Boldrini L, Schlam I, et al. Advancing equitable and personalized cancer care: Novel applications and priorities of artificial intelligence for fairness and inclusivity in the patient care workflow. *Eur J Cancer*. 2024;198:113504.

119. Daemi A, Kalami S, Tahiraga RG, Ghanbarpour O, Barghani MRR, Hooshiar MH, et al. Revolutionizing personalized medicine using artificial intelligence: a meta-analysis of predictive diagnostics and their impacts on drug development. *Clin Exp Med*. 2025;25(1):255.

120. Das A, Behera RN, Kapoor A, Ambatipudi K. The Potential of Meta-Proteomics and Artificial Intelligence to Establish the Next Generation of Probiotics for Personalized Healthcare. *J Agric Food Chem*. 2023;71(46):17528-42.

121. De Deo D, Dal Buono A, Gabbiadini R, Nardone OM, Ferreiro-Iglesias R, Privitera G, et al. Digital biomarkers and artificial intelligence: a new frontier in personalized management of inflammatory bowel disease. *Front Immunol*. 2025;16:1637159.

122. De Riso G, Cocozza S. Artificial Intelligence for Epigenetics: Towards Personalized Medicine. *Curr Med Chem*. 2021;28(32):6654-74.

123. Demir G, Yegin Z. Artificial intelligence: its potential in personalized public health strategies and genetic data analysis: a narrative review. *Per Med*. 2025;22(3):171-9.

124. Dilsizian SE, Siegel EL. Artificial intelligence in medicine and cardiac imaging: harnessing big data and advanced computing to provide personalized medical diagnosis and treatment. *Curr Cardiol Rep*. 2014;16(1):441.

125. Ghosh K, Chandra S, Ghosh S, Ghosh US. Artificial Intelligence in Personalized Medicine for Diabetes Mellitus: A Narrative Review. *Cureus*. 2025;17(9):e91520.

126. Gianoli C, De Bernardi E, Parodi K. "Under the hood": artificial intelligence in personalized radiotherapy. *BJR Open*. 2024;6(1):tzae017.

127. Görtz M, Brandl C, Nitschke A, Riediger A, Stromer D, Byczkowski M, et al. Digital twins

for personalized treatment in uro-oncology in the era of artificial intelligence. *Nat Rev Urol.* 2026;23(1):29-39.

128. Hachache R, Yahyaouy A, Riffi J, Tairi H, Abibou S, Adoui ME, et al. Advancing personalized oncology: a systematic review on the integration of artificial intelligence in monitoring neoadjuvant treatment for breast cancer patients. *BMC Cancer.* 2024;24(1):1300.

129. Hamzyan Olia JB, Raman A, Hsu CY, Alkhayyat A, Nourazarian A. A comprehensive review of neurotransmitter modulation via artificial intelligence: A new frontier in personalized neurobiochemistry. *Comput Biol Med.* 2025;189:109984.

130. Haq IU, Haq I, Xu B. Artificial intelligence in personalized cardiovascular medicine and cardiovascular imaging. *Cardiovasc Diagn Ther.* 2021;11(3):911-23.

131. Hashem H, Sultan I. Revolutionizing precision oncology: the role of artificial intelligence in personalized pediatric cancer care. *Front Med (Lausanne).* 2025;12:1555893.

132. Hoshino I, Yokota H. Radiogenomics of gastroenterological cancer: The dawn of personalized medicine with artificial intelligence-based image analysis. *Ann Gastroenterol Surg.* 2021;5(4):427-35.

133. Huang L, Wu X, You J, Jin Z, He W, Sun J, et

al. Artificial Intelligence Can Predict Personalized Immunotherapy Outcomes in Cancer. *Cancer Immunol Res.* 2025;13(7):964-77.

134. Hueso M, Vellido A, Montero N, Barbieri C, Ramos R, Angoso M, et al. Artificial Intelligence for the Artificial Kidney: Pointers to the Future of a Personalized Hemodialysis Therapy. *Kidney Dis (Basel).* 2018;4(1):1-9.

135. Huffman N, Pasqualini I, Khan ST, Klika AK, Deren ME, Jin Y, et al. Enabling Personalized Medicine in Orthopaedic Surgery Through Artificial Intelligence: A Critical Analysis Review. *JBJS Rev.* 2024;12(3).

136. Hung KF, Yeung AWK, Bornstein MM, Schwendicke F. Personalized dental medicine, artificial intelligence, and their relevance for dentomaxillofacial imaging. *Dentomaxillofac Radiol.* 2023;52(1):20220335.

137. Iacucci M, Santacroce G, Yasuharu M, Ghosh S. Artificial Intelligence-Driven Personalized Medicine: Transforming Clinical Practice in Inflammatory Bowel Disease. *Gastroenterology.* 2025;169(3):416-31.

138. Ijlal A, Mumtaz H, Hassan SM, Mustafa QU, Khalil ABB, Ali U, et al. Bridging surgical oncology and personalized medicine: the role of artificial intelligence and machine learning in thoracic surgery. *Ann Med Surg (Lond).* 2025;87(6):3566-72.

139. Ilić N, Sarajlija A. Artificial Intelligence in the Diagnosis of Pediatric Rare Diseases: From Real-World Data Toward a Personalized Medicine Approach. *J Pers Med.* 2025;15(9).

140. Isaac A, Klontzas ME, Dalili D, Akdogan AI, Fawzi M, Gugliemi G, et al. Revolutionising osseous biopsy: the impact of artificial intelligence in the era of personalized medicine. *Br J Radiol.* 2025;98(1170):795-809.

141. Jalali S, You Q, Xu V, Chen L, Zini J, Zamorano T, et al. The Use of Artificial Intelligence for Personalized Treatment in Psychiatry. *Curr Psychiatry Rep.* 2025;28(1):7.

142. Jill Hopkins J, Keane PA, Balaskas K. Delivering personalized medicine in retinal care: from artificial intelligence algorithms to clinical application. *Curr Opin Ophthalmol.* 2020;31(5):329-36.

143. Jongjiamdee K, Pornwonglert P, Na Bangchang N, Akarasereenont P. Artificial intelligence in traditional medicine: evidence, barriers, and a research roadmap for personalized care. *Front Artif Intell.* 2025;8:1659338.

144. Khan O, Badhiwala JH, Grasso G, Fehlings MG. Use of Machine Learning and Artificial Intelligence to Drive Personalized Medicine Approaches for Spine Care. *World Neurosurg.* 2020;140:512-8.

145. Konstantinou GN, Anderson WC, 3rd, Bagkis E, Brown Z, Karatzas K, Kassandros T, et al. Artificial Intelligence-Driven Wearable and Connected Technology for Allergy: Real-Time Monitoring and Predictive Management for Personalized Care. *J Allergy Clin Immunol Pract.* 2025;13(11):2903-13.e2.

146. Kumar R, Waisberg E, Ong J, Paladugu P, Amiri D, Saintyl J, et al. Artificial Intelligence-Based Methodologies for Early Diagnostic Precision and Personalized Therapeutic Strategies in Neuro-Ophthalmic and Neurodegenerative Pathologies. *Brain Sci.* 2024;14(12).

147. Li F, Wang S, Gao Z, Qing M, Pan S, Liu Y, et al. Harnessing artificial intelligence in sepsis care: advances in early detection, personalized treatment, and real-time monitoring. *Front Med (Lausanne).* 2024;11:1510792.

148. Li LR, Du B, Liu HQ, Chen C. Artificial Intelligence for Personalized Medicine in Thyroid Cancer: Current Status and Future Perspectives. *Front Oncol.* 2020;10:604051.

149. Li YH, Li YL, Wei MY, Li GY. Innovation and challenges of artificial intelligence technology in personalized healthcare. *Sci Rep.* 2024;14(1):18994.

150. Lin B, Wu S. Digital Transformation in Personalized Medicine with Artificial Intelligence and the Internet of Medical Things. *Omics.* 2022;26(2):77-81.

151. Linardon J, Torous J. Integrating Artificial Intelligence and Smartphone Technology to Enhance Personalized Assessment and Treatment for Eating Disorders. *Int J Eat Disord.* 2025;58(8):1415-24.

152. Liu ZY, Kuo CF. Artificial Intelligence-Driven Personalized Medicine. *Hand Clin.* 2026;42(1):65-74.

153. Lococo F, Ghaly G, Chiappetta M, Flamini S, Evangelista J, Bria E, et al. Implementation of Artificial Intelligence in Personalized Prognostic Assessment of Lung Cancer: A Narrative Review. *Cancers (Basel).* 2024;16(10).

154. Maggi M, Chierigo F, Fallara G, Jannello LMI, Tozzi M, Pellegrino F, et al. Shaping the Future of Personalized Therapy in Bladder Cancer Using Artificial Intelligence. *Eur Urol Focus.* 2025.

155. Magni V, Cozzi A, Schiaffino S, Colarieti A, Sardanelli F. Artificial intelligence for digital breast tomosynthesis: Impact on diagnostic performance, reading times, and workload in the era of personalized screening. *Eur J Radiol.* 2023;158:110631.

156. Mahdavi S, Anthony NM, Sikaneta T, Tam PY. Perspective: Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis. *Adv Nutr.* 2025;16(3):100378.

157. Martella S, Cusumano G, Senevirathne TH, Stylianakis D, Palmas E, Denaro N, et al. Evolutionary Overview and Future Perspectives: ESR1 Mutations, Liquid Biopsy, and Artificial Intelligence for a New Era of Personalized Medicine in ER+ Breast Cancer. *Mol Diagn Ther.* 2025;29(6):773-87.

158. Mazumdar H, Khondakar KR, Das S, Halder A, Kaushik A. Artificial intelligence for personalized nanomedicine; from material selection to patient outcomes. *Expert Opin Drug Deliv.* 2025;22(1):85-108.

159. Michelutti L, Tel A, Zeppieri M, Ius T, Sembronio S, Robiony M. The Use of Artificial Intelligence Algorithms in the Prognosis and Detection of Lymph Node Involvement in Head and Neck Cancer and Possible Impact in the Development of Personalized Therapeutic Strategy: A Systematic Review. *J Pers Med.* 2023;13(12).

160. Mikaeili N, Naeim M, Narimani M. Reimagining Mental Health with Artificial Intelligence: Early Detection, Personalized Care, and a Preventive Ecosystem. *J Multidiscip Healthc.* 2025;18:7355-73.

161. Mishra A, Majumder A, Kommineni D, Anna Joseph C, Chowdhury T, Anumula SK. Role of Generative Artificial Intelligence in Personalized Medicine: A Systematic Review. *Cureus.* 2025;17(4):e82310.

162. Mohsin SN, Gapizov A, Ekhator C, Ain NU, Ahmad S, Khan M, et al. The Role of Artificial Intelligence in Prediction, Risk Stratification, and Personalized Treatment Planning for Congenital Heart Diseases. *Cureus*. 2023;15(8):e44374.

163. Mohyeldin M, Mohamed FO, Molina M, Towfig MF, Mustafa AMG, Elhussein AH, et al. Artificial Intelligence in Hypertrophic Cardiomyopathy: Advances, Challenges, and Future Directions for Personalized Risk Prediction and Management. *Cureus*. 2025;17(7):e87907.

164. Nishida N. Advancements in Artificial Intelligence-Enhanced Imaging Diagnostics for the Management of Liver Disease-Applications and Challenges in Personalized Care. *Bioengineering (Basel)*. 2024;11(12).

165. Okpete UE, Byeon H. Explainable artificial intelligence for personalized management of inflammatory bowel disease: A minireview of recent advances. *World J Gastroenterol*. 2025;31(35):111033.

166. Perrier A, Hainaut P, Guenoun A, Nguyen DP, Lamy PJ, Guerber F, et al. [Moving towards a personalized oncology: The contribution of genomic techniques and artificial intelligence in the use of circulating tumor biomarkers]. *Bull Cancer*. 2022;109(2):170-84.

167. Pesapane F, Battaglia O, Pellegrino G, Mangione E, Petitto S, Fiol Manna ED, et al. Advances in breast cancer risk modeling: integrating clinics, imaging, pathology and artificial intelligence for personalized risk assessment. *Future Oncol*. 2023;19(38):2547-64.

168. Pinar U, Pradere B, Roupert M. Artificial intelligence in bladder cancer prognosis: a pathway for personalized medicine. *Curr Opin Urol*. 2021;31(4):404-8.

169. Pitchika V, Büttner M, Schwendicke F. Artificial intelligence and personalized diagnostics in periodontology: A narrative review. *Periodontol 2000*. 2024;95(1):220-31.

170. Rajan S, Schwarz E. Network-based artificial intelligence approaches for advancing personalized psychiatry. *Am J Med Genet B Neuropsychiatr Genet*. 2024;195(8):e32997.

171. Rajeev Kumar S, Kai He K, Lokanathan Y, Gaurav A, Yusoff K, Macedo MF, et al. How artificial intelligence can enable personalized mesenchymal stem cell-based therapeutic strategies in systemic lupus erythematosus. *Front Immunol*. 2025;16:1654117.

172. Ramesh D, Manickavel P, Ghosh S, Bhat M. The Integration of Multi-omics With Artificial Intelligence in Hepatology: A Comprehensive Review of Personalized Medicine, Biomarker Identification, and Drug Discovery. *J Clin Exp Hepatol*. 2025;15(6):102611.

173. Rezayi S, S RNK, Saeedi S. Effectiveness of

Artificial Intelligence for Personalized Medicine in Neoplasms: A Systematic Review. *Biomed Res Int.* 2022;2022:7842566.

174. Robinson CL, D'Souza RS, Yazdi C, Diejomaoh EM, Schatzman ME, Emerick T, et al. Reviewing the Potential Role of Artificial Intelligence in Delivering Personalized and Interactive Pain Medicine Education for Chronic Pain Patients. *J Pain Res.* 2024;17:923-9.

175. Roisman LC, Kian W, Anoze A, Fuchs V, Spector M, Steiner R, et al. Radiological artificial intelligence - predicting personalized immunotherapy outcomes in lung cancer. *NPJ Precis Oncol.* 2023;7(1):125.

176. Rowe JP, Lester JC. Artificial Intelligence for Personalized Preventive Adolescent Healthcare. *J Adolesc Health.* 2020;67(2s):S52-s8.

177. Almansouri NE, Awe M, Rajavelu S, Jahnavi K, Shastry R, Hasan A, et al. Early Diagnosis of Cardiovascular Diseases in the Era of Artificial Intelligence: An In-Depth Review. *Cureus.* 2024;16(3):e55869.

178. Darbandi MR, Darbandi M, Darbandi S, Bado I, Hadizadeh M, Khorram Khorshid HR. Artificial intelligence breakthroughs in pioneering early diagnosis and precision treatment of breast cancer: A multimethod study. *Eur J Cancer.* 2024;209:114227.

179. García-Pola M, Pons-Fuster E, Suárez-

Fernández C, Seoane-Romero J, Romero-Méndez A, López-Jornet P. Role of Artificial Intelligence in the Early Diagnosis of Oral Cancer. A Scoping Review. *Cancers (Basel).* 2021;13(18).

180. Gonçalves N, Chaves J, Marques-Sá I, Dinis-Ribeiro M, Libânio D. Early diagnosis of gastric cancer: Endoscopy and artificial intelligence. *Best Pract Res Clin Gastroenterol.* 2025;75:101979.

181. Goncalves S, Fong PC, Blokhina M. Artificial intelligence for early diagnosis of lung cancer through incidental nodule detection in low- and middle-income countries-acceleration during the COVID-19 pandemic but here to stay. *Am J Cancer Res.* 2022;12(1):1-16.

182. Hegde S, Ajila V, Zhu W, Zeng C. Artificial intelligence in early diagnosis and prevention of oral cancer. *Asia Pac J Oncol Nurs.* 2022;9(12):100133.

183. Huo Y, Chen X, Khan GA, Wang Y. Corneal biomechanics in early diagnosis of keratoconus using artificial intelligence. *Graefes Arch Clin Exp Ophthalmol.* 2024;262(4):1337-49.

184. Jan Z, El Assadi F, Abd-Alrazaq A, Jithesh PV. Artificial Intelligence for the Prediction and Early Diagnosis of Pancreatic Cancer: Scoping Review. *J Med Internet Res.* 2023;25:e44248.

185. Kaur A, Cherukuri SP, Handral MS, Kukunoor HR, Kc R, Godugu S, et al. Artificial Intelligence Enabled Lung Sound Auscultation in

the Early Diagnosis and Subtyping of Interstitial Lung Disease. *J Clin Med.* 2025;14(23).

186. Lee KS, Ahn KH. Application of Artificial Intelligence in Early Diagnosis of Spontaneous Preterm Labor and Birth. *Diagnostics (Basel).* 2020;10(9).

187. Lee KS, Kim ES. Explainable Artificial Intelligence in the Early Diagnosis of Gastrointestinal Disease. *Diagnostics (Basel).* 2022;12(11).

188. Maleki SF, Yousefi M, Sobhi N, Jafarizadeh A, Alizadehsani R, Gorriz-Saez JM. Artificial Intelligence in Eye Movements Analysis for Alzheimer's Disease Early Diagnosis. *Curr Alzheimer Res.* 2024;21(3):155-65.

189. Mehta A, Kumar H, Yazji K, Wireko AA, Sivanandan Nagarajan J, Ghosh B, et al. Effectiveness of artificial intelligence-assisted colonoscopy in early diagnosis of colorectal cancer: a systematic review. *Int J Surg.* 2023;109(4):946-52.

190. Nishat SMH, Shahid Tanveer A, Alshamsi B, Shaheen MH, Shahid Tanveer A, Nishat A, et al. Artificial Intelligence: A New Frontier in Rare Disease Early Diagnosis. *Cureus.* 2025;17(2):e79487.

191. Parmar UPS, Surico PL, Singh RB, Romano F, Salati C, Spadea L, et al. Artificial Intelligence (AI) for Early Diagnosis of Retinal Diseases. *Medicina (Kaunas).* 2024;60(4).

192. Patel K, Sanghvi H, Gill GS, Agarwal O, Pandya AS, Agarwal A, et al. Differentiating Cystic Lesions in the Sellar Region of the Brain Using Artificial Intelligence and Machine Learning for Early Diagnosis: A Prospective Review of the Novel Diagnostic Modalities. *Cureus.* 2024;16(12):e75476.

193. Pawar M, Pingale S, Kadam K, Jadhav A, Kaul-Ghanekar R. Artificial intelligence-driven screening, early diagnosis, and treatment strategies for cervical cancer: an overview. *Infect Agent Cancer.* 2025;21(1):1.

194. Scribano Parada MP, González Palau F, Valladares Rodríguez S, Rincon M, Rico Barroeta MJ, García Rodriguez M, et al. Preclinical Cognitive Markers of Alzheimer Disease and Early Diagnosis Using Virtual Reality and Artificial Intelligence: Literature Review. *JMIR Med Inform.* 2025;13:e62914.

195. Semerci ZM, Toru HS, Cobankent Aytekin E, Tercanlı H, Chiorean DM, Albayrak Y, et al. The Role of Artificial Intelligence in Early Diagnosis and Molecular Classification of Head and Neck Skin Cancers: A Multidisciplinary Approach. *Diagnostics (Basel).* 2024;14(14).

196. Shao J, Feng J, Li J, Liang S, Li W, Wang C. Novel tools for early diagnosis and precision treatment based on artificial intelligence. *Chin*

Med J Pulm Crit Care Med. 2023;1(3):148-60.

197. Si H, Gao S, Wang Y. [Research progress on the application of artificial intelligence in the early diagnosis and treatment of burn diseases]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2024;36(8):887-91.

198. Srivastava V, Kumar R, Wani MY, Robinson K, Ahmad A. Role of artificial intelligence in early diagnosis and treatment of infectious diseases. Infect Dis (Lond). 2025;57(1):1-26.

199. Verma RK, Pandey M, Chawla P, Choudhury H, Mayuren J, Bhattacharya SK, et al. An Insight into the Role of Artificial Intelligence in the Early Diagnosis of Alzheimer's Disease. CNS Neurol Disord Drug Targets. 2022;21(10):901-12.

200. Wei Q, Xiu G. [Research progress on application of artificial intelligence in early diagnosis and prediction of sepsis]. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 2022;34(11):1218-21.

201. Zhang W, Chen X, Wong KC. Noninvasive early diagnosis of intestinal diseases based on artificial intelligence in genomics and microbiome. J Gastroenterol Hepatol. 2021;36(4):823-31.

202. Zhang Y, Li Y, Qian Y, Wang Z. Commentary on 'Effectiveness of artificial intelligence-assisted colonoscopy in early diagnosis of colorectal cancer: a systematic review'. Int J Surg. 2023;109(6):1800-1.

203. Abbas GH, Sen P, Giri OA, Khan NH. Artificial Intelligence-Based Predictive Modeling for Early Detection of Sepsis in Hospitalized Patients: A Systematic Review and Meta-Analysis. Crit Care Explor. 2025;7(12):e1360.

204. Alfaki Ahmed SA, Adam M, HM MO, Fahad Alqahtani NH, Mahdi Gabrelaar AE, Hassan Abdalla MS, et al. Artificial Intelligence for Early Detection of Preeclampsia and Gestational Diabetes Mellitus: A Systematic Review of Diagnostic Performance. Cureus. 2025;17(9):e92585.

205. Butt FR, Chu MWA, Nedadur R. The role of artificial intelligence in early detection and intervention of coronary artery disease. Curr Opin Cardiol. 2025;40(5):343-9.

206. Chadha S, Mukherjee S, Sanyal S. Advancements and implications of artificial intelligence for early detection, diagnosis and tailored treatment of cancer. Semin Oncol. 2025;52(3):152349.

207. Chaitanuwong P, Singhanetr P, Chainakul M, Arjkongharn N, Ruamviboonsuk P, Grzybowski A. Potential Ocular Biomarkers for Early Detection of Alzheimer's Disease and Their Roles in Artificial Intelligence Studies. Neurol Ther. 2023;12(5):1517-32.

208. Debellotte O, Dookie RL, Rinkoo F, Kar A, Salazar González JF, Saraf P, et al. Artificial

Intelligence and Early Detection of Breast, Lung, and Colon Cancer: A Narrative Review. *Cureus*. 2025;17(2):e79199.

209. Desai M, Desai B. Evolution and integration of artificial intelligence across the cancer continuum in women: advances in risk assessment, prevention, and early detection. *Cancer Causes Control*. 2025;36(11):1343-60.

210. Ejaz H, Thyyib T, Ibrahim A, Nishat A, Malay J. Role of artificial intelligence in early detection of congenital heart diseases in neonates. *Front Digit Health*. 2023;5:1345814.

211. Etekochay MO, Amaravadhi AR, González GV, Atanasov AG, Matin M, Mofatteh M, et al. Unveiling New Strategies Facilitating the Implementation of Artificial Intelligence in Neuroimaging for the Early Detection of Alzheimer's Disease. *J Alzheimers Dis*. 2024;99(1):1-20.

212. Fernandes S, Rosselet Amoussou J, Gomes da Rocha C, Perruchoud E, von Gunten A, Mabire C, et al. Using Artificial Intelligence-Based Technologies for the Early Detection of Behavioral and Psychological Symptoms of Dementia: Scoping Review. *JMIR Aging*. 2025;8:e76074.

213. Ford E, Milne R, Curlewis K. Ethical issues when using digital biomarkers and artificial intelligence for the early detection of dementia. *Wiley Interdiscip Rev Data Min Knowl Discov*.

2023;13(3):e1492.

214. Garg P, Mohanty A, Ramisetty S, Kulkarni P, Horne D, Pisick E, et al. Artificial intelligence and allied subsets in early detection and preclusion of gynecological cancers. *Biochim Biophys Acta Rev Cancer*. 2023;1878(6):189026.

215. Gomutbutra P, Krongsut S, Lott J. A Systematic Review and Meta-Analysis Evaluating the Clinical Impact and Accuracy of Artificial Intelligence in EEG for the Early Detection of Nonconvulsive Seizures. *Neurodiagn J*. 2025;65(3):173-96.

216. Goudarzi N, Taheri Z, Nezhad Salari AM, Kazemzadeh K, Tafakhori A. Recognition and classification of facial expression using artificial intelligence as a key of early detection in neurological disorders. *Rev Neurosci*. 2025;36(5):479-95.

217. Habib MB, Batool G, Shah NA, Muhammad T, Akbar NS, Shahid A. Biofilm-mediated infections; novel therapeutic approaches and harnessing artificial intelligence for early detection and treatment of biofilm-associated infections. *Microb Pathog*. 2025;203:107497.

218. Hassan YM, Wanas A, Ali AA, El-Sayed WM. Integrating artificial intelligence with nanodiagnostics for early detection and precision management of neurodegenerative diseases. *J Nanobiotechnology*. 2025;23(1):668.

219. Houssami N, Kirkpatrick-Jones G, Noguchi N, Lee CI. Artificial Intelligence (AI) for the early detection of breast cancer: a scoping review to assess AI's potential in breast screening practice. *Expert Rev Med Devices.* 2019;16(5):351-62.

220. Huang C, Shen Y, Galgano SJ, Goenka AH, Hecht EM, Kambadakone A, et al. Advancements in early detection of pancreatic cancer: the role of artificial intelligence and novel imaging techniques. *Abdom Radiol (NY).* 2025;50(4):1731-43.

221. Ji X, Huo H, Dong L. Early Detection of Sepsis Using Artificial Intelligence in Intensive Care Units: A Systematic Review and Meta-Analysis. *J Intensive Care Med.* 2025;8850666251372499.

222. Jones OT, Matin RN, van der Schaar M, Prathivadi Bhayankaram K, Ranmuthu CKI, Islam MS, et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. *Lancet Digit Health.* 2022;4(6):e466-e76.

223. Karakasis P, Theofilis P, Sagris M, Pamporis K, Stachteas P, Sidiropoulos G, et al. Artificial Intelligence in Atrial Fibrillation: From Early Detection to Precision Therapy. *J Clin Med.* 2025;14(8).

224. Karuppan Perumal MK, Rajan Renuka R, Kumar Subbiah S, Manickam Natarajan P. Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review. *Front Oral Health.* 2025;6:1592428.

225. Kenner B, Chari ST, Kelsen D, Klimstra DS, Pandol SJ, Rosenthal M, et al. Artificial Intelligence and Early Detection of Pancreatic Cancer: 2020 Summative Review. *Pancreas.* 2021;50(3):251-79.

226. Kenner BJ, Abrams ND, Chari ST, Field BF, Goldberg AE, Hoos WA, et al. Early Detection of Pancreatic Cancer: Applying Artificial Intelligence to Electronic Health Records. *Pancreas.* 2021;50(7):916-22.

227. Kwan JM, Oikonomou EK, Henry ML, Sinusas AJ. Multimodality Advanced Cardiovascular and Molecular Imaging for Early Detection and Monitoring of Cancer Therapy-Associated Cardiotoxicity and the Role of Artificial Intelligence and Big Data. *Front Cardiovasc Med.* 2022;9:829553.

228. Li R, Wang X, Lawler K, Garg S, Bai Q, Alty J. Applications of artificial intelligence to aid early detection of dementia: A scoping review on current capabilities and future directions. *J Biomed Inform.* 2022;127:104030.

229. McGough WC, Sanchez LE, McCague C, Stewart GD, Schönlieb CB, Sala E, et al. Artificial intelligence for early detection of renal cancer

in computed tomography: A review. *Camb Prism Precis Med.* 2023;1:e4.

230. Mendoza Ladd A, Diehl DL. Artificial intelligence for early detection of pancreatic adenocarcinoma: The future is promising. *World J Gastroenterol.* 2021;27(13):1283-95.

231. Mittal R, Weiss MB, Rendon A, Shafazand S, Lemos JRN, Hirani K. Harnessing Machine Learning, a Subset of Artificial Intelligence, for Early Detection and Diagnosis of Type 1 Diabetes: A Systematic Review. *Int J Mol Sci.* 2025;26(9).

232. Murray K, Oldfield L, Stefanova I, Gentiluomo M, Aretini P, O'Sullivan R, et al. Biomarkers, omics and artificial intelligence for early detection of pancreatic cancer. *Semin Cancer Biol.* 2025;111:76-88.

233. Nagi R, Bibra A, Rakesh N, Patil DJ, Vyas T. Artificial intelligence-integrated optical coherence tomography for screening and early detection of oral cancer. *Gen Dent.* 2024;72(1):46-52.

234. Nicosia A, Cancilla N, Martín Guerrero JD, Tinnirello I, Cipollina A. Artificial Intelligence in Nephrology: From Early Detection to Clinical Management of Kidney Diseases. *Bioengineering (Basel).* 2025;12(10).

235. Patel RH, Foltz EA, Witkowski A, Ludzik J. Analysis of Artificial Intelligence-Based Approaches Applied to Non-Invasive Imaging for Early Detection of Melanoma: A Systematic

Review. *Cancers (Basel).* 2023;15(19).

236. Paul S, Maindarkar M, Saxena S, Saba L, Turk M, Kalra M, et al. Bias Investigation in Artificial Intelligence Systems for Early Detection of Parkinson's Disease: A Narrative Review. *Diagnostics (Basel).* 2022;12(1).

237. Raina R, Nada A, Shah R, Aly H, Kadatane S, Abitbol C, et al. Artificial intelligence in early detection and prediction of pediatric/neonatal acute kidney injury: current status and future directions. *Pediatr Nephrol.* 2024;39(8):2309-24.

238. Ramírez LVH, Forero HE, Grosso MPN, Rincón EHH. Advances in artificial intelligence for the early detection of cervical cancer in adult women: a scoping review. *Rev Bras Ginecol Obstet.* 2025;47.

239. Reddy A, Reddy RP, Roghani AK, Garcia RI, Khemka S, Pattoor V, et al. Artificial intelligence in Parkinson's disease: Early detection and diagnostic advancements. *Ageing Res Rev.* 2024;99:102410.

240. Rezayi S, Ghazisaeedi M, Kalhori SRN, Saeedi S. Artificial Intelligence Approaches on X-ray-oriented Images Process for Early Detection of COVID-19. *J Med Signals Sens.* 2022;12(3):233-53.

241. Shah S, Slaney E, VerHage E, Chen J, Dias R, Abdelmalik B, et al. Application of Artificial Intelligence in the Early Detection of Retinopathy of Prematurity: Review of the Literature.

Neonatology. 2023;120(5):558-65.

242. Sijithra PC, Santhi N, Ramasamy N. A review study on early detection of pancreatic ductal adenocarcinoma using artificial intelligence assisted diagnostic methods. *Eur J Radiol.* 2023;166:110972.

243. Sobhi N, Sadeghi-Bazargani Y, Mirzaei M, Abdollahi M, Jafarizadeh A, Pedrammehr S, et al. Artificial intelligence for early detection of diabetes mellitus complications via retinal imaging. *J Diabetes Metab Disord.* 2025;24(1):104.

244. Sorrentino FS, Gardini L, Fontana L, Musa M, Gabai A, Maniaci A, et al. Novel Approaches for Early Detection of Retinal Diseases Using Artificial Intelligence. *J Pers Med.* 2024;14(7).

245. Sultany A, Chikatimalla R, Rao A, Omar MA, Shaar A, Ali H, et al. Real-Time Artificial Intelligence Versus Standard Colonoscopy in the Early Detection of Colorectal Cancer: A Systematic Review and Meta-Analysis. *Healthcare (Basel).* 2025;13(19).

246. Tacelli M, Lauri G, Tabacelia D, Tieranu CG, Arcidiacono PG, Săftoiu A. Integrating artificial intelligence with endoscopic ultrasound in the early detection of bilio-pancreatic lesions: Current advances and future prospects. *Best Pract Res Clin Gastroenterol.* 2025;74:101975.

247. Tran TT, Yun G, Kim S. Artificial intelligence and predictive models for early detection of acute kidney injury: transforming clinical practice. *BMC Nephrol.* 2024;25(1):353.

248. Veseli E, Mehrabanian M, Ammar N. The potential of artificial intelligence in the early detection of systemic diseases during routine dental care. *Br Dent J.* 2025;239(3):168-74.

249. Viscaino M, Torres Bustos J, Muñoz P, Auat Cheein C, Cheein FA. Artificial intelligence for the early detection of colorectal cancer: A comprehensive review of its advantages and misconceptions. *World J Gastroenterol.* 2021;27(38):6399-414.

250. Vrahatis AG, Skolariki K, Krokidis MG, Lazaros K, Exarchos TP, Vlamos P. Revolutionizing the Early Detection of Alzheimer's Disease through Non-Invasive Biomarkers: The Role of Artificial Intelligence and Deep Learning. *Sensors (Basel).* 2023;23(9).

251. Waljee AK, Weinheimer-Haus EM, Abubakar A, Ngugi AK, Siwo GH, Kwakye G, et al. Artificial intelligence and machine learning for early detection and diagnosis of colorectal cancer in sub-Saharan Africa. *Gut.* 2022;71(7):1259-65.

252. Wang HY, Lin WY, Zhou C, Yang ZA, Kalpana S, Lebowitz MS. Integrating Artificial Intelligence for Advancing Multiple-Cancer Early Detection via Serum Biomarkers: A Narrative Review. *Cancers (Basel).* 2024;16(5).

253. Wang Z, Liu Y, Niu X. Application

of artificial intelligence for improving early detection and prediction of therapeutic outcomes for gastric cancer in the era of precision oncology. *Semin Cancer Biol.* 2023;93:83-96.

254. Zeppieri M, Gardini L, Culiersi C, Fontana L, Musa M, D'Esposito F, et al. Novel Approaches for the Early Detection of Glaucoma Using Artificial Intelligence. *Life (Basel).* 2024;14(11).

255. Zhong J, Shi J, Amundadottir LT. Artificial intelligence and improved early detection for pancreatic cancer. *Innovation (Camb).* 2023;4(4):100457.

256. Farrokhi M, Mehrtabar S, Harati K, Pourlak T, Ghadirzadeh E, Abbasmofrad H, et al. Clinical Decision-Making Using Artificial Intelligence. *Kindle.* 2025;5(1):1-236.

257. Tahavvori A, Chelan RJ, Aminoleslami S, Moghadam OF, Haghghi L, Abdian Y, et al. Large Language Models and ChatGPT in Medical Sciences: Foundations, Capabilities, and Challenges. *Kindle.* 2025;5(1):1-222.

258. Ramezanian M, Benis DS, Nikakhtar R, Gorjizadeh N, Asadi F, Bagherianlemraski M, et al. Artificial Intelligence in Genomic Medicine: Improving Diagnostic Accuracy and Treatment Outcomes. *Kindle.* 2025;5(1):1-215.

259. Rahmani E, Farrokhi M, Aghajan A, Gholampour G, Ghoddjani E, Shemshadigolafzani R, et al. AI-Driven Strategies for Improving Patient

Quality of Life. *Kindle.* 2025;5(1):1-214.

260. Rahaeimehr R, Babakhani Z, Moghadam OF, Nasir SM, Safaei P, Abdollahi MAA, et al. Application of AI in Research and Data Science. *Kindle.* 2025;5(1):1-362.

261. Niakosari V, Mosaddeghi-Heris R, Hezarani HB, Farrokhi M, Safaei P, Nikseresht H, et al. AI in Medical Imaging and Early Disease Detection. *Kindle.* 2025;5(1):1-203.

262. Louia S, Mosaddeghi-Heris R, Kamvar R, Zahmatkesh N, Damiri M, Esfahani MA, et al. Artificial Intelligence in Cancer Genomics: Transforming Diagnosis, Treatment, and Precision Medicine. *Kindle.* 2025;5(1):1-234.

263. Louia S, Moghadam OF, Chelan RJ, Taheri N, Amini F, Ahmadi S, et al. Role of Immunogenetics in the Etiology, Diagnosis, and Treatment of Diseases. *Kindle.* 2025;5(1):1-222.

264. Javadzadeh A, Shafiei D, Amlash RS, Mehrvar R, Sepehrian S, Shafiee A, et al. The Brain-Body Connection: Neuroscience's Role Across Medical Sciences Disciplines. *Kindle.* 2025;5(1):1-210.

265. Hedayati F, Chelan RJ, Alijaniha M, Koma KK, Irajian P, Rajabi N, et al. Explainable Artificial Intelligence for Reducing the Global Cancer Burden. *Kindle.* 2025;5(1):1-195.

266. Harati K, Tahernejad M, Saddam SMS,

Farshi M, Saeedfar M, Gheibi M, et al. The Future of Prosthetics and Organ Transplantation: A Therapeutic Approach Across Various Medical Disciplines. Kindle. 2025;5(1):1-193.

267. Harati K, Mosaddeghi-Heris R, Kiani K, Saligheh Rad M, Morovatshoar R, Kamali M, et al. The AI Revolution: Predicting and Managing the Next Global Health Challenges and Emerging Disease Outbreaks. Kindle. 2025;5(1):1-326.

268. Harati K, Abbasmofrad H, Ebrahimi M, Hashemlu L, Chelan RJ, Hashemzadeh A, et al. Intelligent Patient Engagement: Education and Follow-Up through AI and Telemedicine. Kindle. 2025;5(1):1-185.

269. Gheibi M, Rajabloo Y, Alipour-Khabir Y, Azami P, Louia S, Bojnordi TE, et al. Artificial Intelligence in Biomarker Discovery: Applications Across Medical Specialties. Kindle. 2025;5(1):1-209.

270. Farrokhi M, Taheri N, Moghadam OF, Armoon M, Samimi S, Torkashvand N, et al. Artificial Intelligence for Hard-to-Treat and Unknown-Origin Cancers. Kindle. 2025;5(1):1-296.

271. Farrokhi M, Ghalamkarpoor N, Nouri S, Babaei M, Rajabloo Y, Sattari M, et al. Innovative Vaccination: A New Era in Cancer Prevention. Kindle. 2025;5(1):1-194.

272. Babaheidarian P, Soltanattar A, Sajadi SK,

Rostamian L, Foroutani L, Soleymanpourshamsi T, et al. Robotics in Healthcare. Kindle. 2025;5(1):1-178.

273. Rahmani E, Bayat Z, Farrokhi M, Karimian S, Zahedpasha R, Sabzehie H, et al. Monkeypox: a comprehensive review of virology, epidemiology, transmission, diagnosis, prevention, treatment, and artificial intelligence applications. Archives of Academic Emergency Medicine. 2024;12(1):e70.

274. Moteshakereh SM, Zarei H, Nosratpour M, Moshfegh MZ, Shirvani P, Mirahmadi A, et al. Evaluating the diagnostic performance of MRI for identification of meniscal ramp lesions in ACL-deficient knees: a systematic review and meta-analysis. JBJS. 2024;106(12):1117-27.

275. Motavaselian M, Farrokhi M, Khouzani PJ, Fard AM, Daeizadeh F, Pourrahimi M, et al. Diagnostic performance of ultrasonography for identification of small bowel obstruction; a systematic review and meta-analysis. Archives of Academic Emergency Medicine. 2024;12(1):e33.

276. Farrokhi M, Taheri F, Farrokhi M, Tosi YEK, Ghadirzadeh E, Bagheri M, et al. Nanomedicine: Technologies and Applications. Kindle. 2024;4(1):1-196.

277. Rahmani E, Fayyazishishavan E, Afzalian A, Varshochi S, Amani-Beni R, Ahadiat S-A, et al. Point-of-care ultrasonography for identification of skin and soft tissue abscess in adult and pediatric

patients; a systematic review and meta-analysis. Archives of Academic Emergency Medicine. 2023;11(1):e49.

278. Kazemi S-M, Khorram R, Fayyazishishavan E, Amani-Beni R, Haririan Y, Khameneh SMH, et al. Diagnostic Accuracy of Ottawa Knee Rule for Diagnosis of Fracture in Patients with Knee Trauma; a Systematic Review and Meta-analysis. Archives of Academic Emergency Medicine. 2023;11(1):e30.

279. Farrokhi M, Moeini A, Taheri F, Farrokhi M, Khodashenas M, Babaei M, et al. AI-assisted Screening and Prevention Programs for Diseases. Kindle. 2023;3(1):1-209.

280. Farrokhi M, Yarmohammadi B, Mangouri A, Hekmatnia Y, Bahramvand Y, Kiani M, et al. Screening performance characteristics of ultrasonography in confirmation of endotracheal intubation; a systematic review and meta-analysis. Archives of Academic Emergency Medicine. 2021;9(1):e68.

281. Shayganfar A, Farrokhi M, Shayganfar S, Ebrahimian S. Associations between bone mineral density, trabecular bone score, and body mass index in postmenopausal females. Osteoporosis and sarcopenia. 2020;6(3):111-4.

Proof