Role of Biomarkers in Risk, Diagnosis, Response to Treatment, and Prognosis of the Autoimmune Diseases
Keywords:
Biomarkers , Diagnosis , Treatment , Prognosis , Autoimmune DiseasesAbstract
Over the past three decades, many methods have been developed to evaluate levels of biomarkers in autoimmune diseases. Early investigations have shown that some biomarkers are increased during active phases of the autoimmune diseases compared to healthy controls. Furthermore, it has been shown that there are some positive associations between some biomarkers and the severity of the autoimmune diseases. Moreover, managements with higher efficacies have also been shown to reduce levels of biomarkers in autoimmune diseases. Therefore, in this book we aimed to discuss the role of biomarkers in risk, diagnosis, response to treatment, and prognosis of the autoimmune diseases.
References
Mannella, K., A.C. Cudlip, and M.W.R. Holmes, Adaptations in Muscular Strength for Individuals With Multiple Sclerosis Following Robotic Rehabilitation: A Scoping Review. Front Rehabil Sci, 2022. 3: p. 882614.
Graves, J.S., et al., Ageing and multiple sclerosis. Lancet Neurol, 2022.
Läderach, F. and C. Münz, Altered Immune Response to the Epstein-Barr Virus as a Prerequisite for Multiple Sclerosis. Cells, 2022. 11(17).
Mariottini, A., P.A. Muraro, and J.D. Lünemann, Antibody-mediated cell depletion therapies in multiple sclerosis. Front Immunol, 2022. 13: p. 953649.
Barzegar, M., et al., Association of Disease-Modifying Therapies with COVID-19 Susceptibility and Severity in Patients with Multiple Sclerosis: A Systematic Review and Network Meta-Analysis. Mult Scler Int, 2022. 2022: p. 9388813.
Liu, R., et al., Autoreactive lymphocytes in multiple sclerosis: Pathogenesis and treatment target. Front Immunol, 2022. 13: p. 996469.
Mavridis, T., et al., B-Cell Targeted Therapies in Patients with Multiple Sclerosis and Incidence of Headache: A Systematic Review and Meta-Analysis. J Pers Med, 2022. 12(9).
Pachner, A., The Brave New World of Early Treatment of Multiple Sclerosis: Using the Molecular Biomarkers CXCL13 and Neurofilament Light to Optimize Immunotherapy. Biomedicines, 2022. 10(9).
Geladaris, A., S. Torke, and M.S. Weber, Bruton's Tyrosine Kinase Inhibitors in Multiple Sclerosis: Pioneering the Path Towards Treatment of Progression? CNS Drugs, 2022. 36(10): p. 1019-1030.
Borda, M., J.B. Aquino, and G.L. Mazzone, Cell-based experimental strategies for myelin repair in multiple sclerosis. J Neurosci Res, 2022.
Zhou, X., et al., Clinical application of transcranial magnetic stimulation in multiple sclerosis. Front Immunol, 2022. 13: p. 902658.
Albanese, A., et al., COVID-19 severity among patients with multiple sclerosis treated with cladribine: A systematic review and meta-analysis. Mult Scler Relat Disord, 2022. 68: p. 104156.
Li, R., et al., Crosstalk between dendritic cells and regulatory T cells: Protective effect and therapeutic potential in multiple sclerosis. Front Immunol, 2022. 13: p. 970508.
Carnero Contentti, E. and J. Correale, Current Perspectives: Evidence to Date on BTK Inhibitors in the Management of Multiple Sclerosis. Drug Des Devel Ther, 2022. 16: p. 3473-3490.
Arsenault, S., et al., Does the use of the Bruton Tyrosine Kinase inhibitors and the c-kit inhibitor masitinib result in clinically significant outcomes among patients with various forms of multiple sclerosis? Mult Scler Relat Disord, 2022. 67: p. 104164.
Dykukha, I., et al., Effects of Sativex(Ⓡ) on cognitive function in patients with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord, 2022. 68: p. 104173.
Zhang, T., et al., The Efficacy and Safety of Manual Therapy for Symptoms Associated with Multiple Sclerosis: A Systematic Review and Meta-Analysis. J Integr Complement Med, 2022.
Akkoc, Y., Efficacy and safety of mirabegron for treatment of neurogenic detrusor overactivity in adults with spinal cord injury or multiple sclerosis: a systematic review. Spinal Cord, 2022. 60(10): p. 854-861.
Yang, K., et al., The emerging roles of piezo1 channels in animal models of multiple sclerosis. Front Immunol, 2022. 13: p. 976522.
Karami Fath, M., et al., Exosome application in treatment and diagnosis of B-cell disorders: leukemias, multiple sclerosis, and arthritis rheumatoid. Cell Mol Biol Lett, 2022. 27(1): p. 74.
Ojeda-Hernández, D.D., et al., Exosomes and Biomaterials: In Search of a New Therapeutic Strategy for Multiple Sclerosis. Life (Basel), 2022. 12(9).
Seebacher, B., M. Reindl, and T. Kahraman, Factors and strategies affecting motor imagery ability in people with multiple sclerosis: a systematic review. Physiotherapy, 2022.
Salari, N., et al., The global prevalence of sexual dysfunction in women with multiple sclerosis: a systematic review and meta-analysis. Neurol Sci, 2022.
Ghadiri, F., et al., Gut microbiome in multiple sclerosis-related cognitive impairment. Mult Scler Relat Disord, 2022. 67: p. 104165.
Shobeiri, P., et al., IL-6 and TNF-α responses to acute and regular exercise in adult individuals with multiple sclerosis (MS): a systematic review and meta-analysis. Eur J Med Res, 2022. 27(1): p. 185.
Luca, M., et al., Illness perceptions and outcome in multiple sclerosis: A systematic review of the literature. Mult Scler Relat Disord, 2022. 67: p. 104180.
Filser, M., et al., The manifestation of affective symptoms in multiple sclerosis and discussion of the currently available diagnostic assessment tools. J Neurol, 2022.
Alanazi, A., et al., Mesenchymal stem cell therapy: A review of clinical trials for multiple sclerosis. Regen Ther, 2022. 21: p. 201-209.
Montañés-Masias, B., et al., Online psychological interventions to improve symptoms in multiple sclerosis: A systematic review: Online psychological interventions in Multiple Sclerosis. Acta Neurol Scand, 2022. 146(5): p. 448-464.
Ciapă, M.A., et al., Optic Neuritis in Multiple Sclerosis-A Review of Molecular Mechanisms Involved in the Degenerative Process. Curr Issues Mol Biol, 2022. 44(9): p. 3959-3979.
Sasaki, J.E., et al., Pedometers and Accelerometers in Multiple Sclerosis: Current and New Applications. Int J Environ Res Public Health, 2022. 19(18).
Sahraian, M.A., et al., Post marketing new adverse effects of oral therapies in multiple sclerosis: A systematic review. Mult Scler Relat Disord, 2022. 68: p. 104157.
Trideva Sastri, K., et al., Potential nanocarrier-mediated miRNA-based therapy approaches for multiple sclerosis. Drug Discov Today, 2022. 27(11): p. 103357.
Jiang, J., et al., The relationship between stress and disease onset and relapse in multiple sclerosis: A systematic review. Mult Scler Relat Disord, 2022. 67: p. 104142.
Jayasinghe, M., et al., The Role of Diet and Gut Microbiome in Multiple Sclerosis. Cureus, 2022. 14(9): p. e28975.
Tatomir, A., et al., Role of RGC-32 in multiple sclerosis and neuroinflammation - few answers and many questions. Front Immunol, 2022. 13: p. 979414.
Barizzone, N., et al., A Scoping Review on Body Fluid Biomarkers for Prognosis and Disease Activity in Patients with Multiple Sclerosis. J Pers Med, 2022. 12(9).
Nabizadeh, F., et al., Seasonal and monthly variation in multiple sclerosis relapses: a systematic review and meta-analysis. Acta Neurol Belg, 2022.
Marzban, M., et al., Stem cell therapy for cuprizone model of multiple sclerosis focusing on the effectiveness of different injection methods and cell labeling. Acta Histochem, 2022. 124(7): p. 151953.
Król-Grzymała, A., et al., Tear Biomarkers in Alzheimer's and Parkinson's Diseases, and Multiple Sclerosis: Implications for Diagnosis (Systematic Review). Int J Mol Sci, 2022. 23(17).
Melnikov, M. and A. Lopatina, Th17-cells in depression: Implication in multiple sclerosis. Front Immunol, 2022. 13: p. 1010304.
Jacobs, B.M., et al., Towards a global view of multiple sclerosis genetics. Nat Rev Neurol, 2022. 18(10): p. 613-623.
Birmpili, D., et al., The Translatability of Multiple Sclerosis Animal Models for Biomarkers Discovery and Their Clinical Use. Int J Mol Sci, 2022. 23(19).
Lus, G., et al., Unmet needs and gaps in the identification of secondary progression in multiple sclerosis: a Southern Italy healthcare professionals' perspective. Neurol Sci, 2022: p. 1-14.
Van Wijmeersch, B., et al., Using personalized prognosis in the treatment of relapsing multiple sclerosis: A practical guide. Front Immunol, 2022. 13: p. 991291.
Kim, E., et al., Vaccination of multiple sclerosis patients during the COVID-19 era: Novel insights into vaccine safety and immunogenicity. Mult Scler Relat Disord, 2022. 67: p. 104172.
Rudick, R.A. and S.E. Goelz, Beta-interferon for multiple sclerosis. Exp Cell Res, 2011. 317(9): p. 1301-11.
Teunissen, C.E., et al., Body fluid biomarkers for multiple sclerosis--the long road to clinical application. Nat Rev Neurol, 2015. 11(10): p. 585-96.
Comabella, M. and X. Montalban, Body fluid biomarkers in multiple sclerosis. Lancet Neurol, 2014. 13(1): p. 113-26.
Calvo-Barreiro, L., et al., Combined therapies to treat complex diseases: The role of the gut microbiota in multiple sclerosis. Autoimmun Rev, 2018. 17(2): p. 165-174.
Beutel, T., et al., Cortical projection neurons as a therapeutic target in multiple sclerosis. Expert Opin Ther Targets, 2020. 24(12): p. 1211-1224.
Junker, A., R. Hohlfeld, and E. Meinl, The emerging role of microRNAs in multiple sclerosis. Nat Rev Neurol, 2011. 7(1): p. 56-9.
Sáenz-Cuesta, M., I. Osorio-Querejeta, and D. Otaegui, Extracellular Vesicles in Multiple Sclerosis: What are They Telling Us? Front Cell Neurosci, 2014. 8: p. 100.
Momeni, F., et al., Joint Application of Magnetic Resonance Imaging and Biochemical Biomarkers in Diagnosis of Multiple Sclerosis. Curr Med Chem, 2020. 27(39): p. 6703-6726.
Minutti-Zanella, C., et al., miRNAs in multiple sclerosis: A clinical approach. Mult Scler Relat Disord, 2022. 63: p. 103835.
Miller, E., Multiple sclerosis. Adv Exp Med Biol, 2012. 724: p. 222-38.
Macaron, G., et al., Newer Treatment Approaches in Pediatric-Onset Multiple Sclerosis. Curr Treat Options Neurol, 2019. 21(10): p. 50.
Décard, B.F. and T. Derfuss, Promising Oral Compounds for the Treatment of Multiple Sclerosis: A Glance into the Future. Semin Neurol, 2016. 36(2): p. 128-39.
Rotstein, D. and X. Montalban, Reaching an evidence-based prognosis for personalized treatment of multiple sclerosis. Nat Rev Neurol, 2019. 15(5): p. 287-300.
Mayer, M.C., R. Hohlfeld, and E. Meinl, Viability of autoantibody-targets: how to tackle pathogenetic heterogeneity as an obstacle for treatment of multiple sclerosis. J Neurol Sci, 2012. 319(1-2): p. 2-7.
Burton, J.M. and F.E. Costello, Vitamin D in multiple sclerosis and central nervous system demyelinating disease--a review. J Neuroophthalmol, 2015. 35(2): p. 194-200.
Manfredini, M., et al., Acquired White Oral Lesions with Specific Patterns: Oral Lichen Planus and Lupus Erythematosus. Dermatol Pract Concept, 2021. 11(3): p. e2021074.
González-Moles, M., P. Ramos-García, and S. Warnakulasuriya, An appraisal of highest quality studies reporting malignant transformation of oral lichen planus based on a systematic review. Oral Dis, 2021. 27(8): p. 1908-1918.
Shang, Q., et al., Association of Human Papillomavirus With Oral Lichen Planus and Oral Leukoplakia: A Meta-analysis. J Evid Based Dent Pract, 2020. 20(4): p. 101485.
De Porras-Carrique, T., et al., Autoimmune disorders in oral lichen planus: A systematic review and meta-analysis. Oral Dis, 2022.
Rodriguez-Archilla, A. and S. Fernandez-Torralbo, Candida species colonization in oral lichen planus: A meta-analysis. Int J Health Sci (Qassim), 2022. 16(4): p. 58-63.
Li, K., W. He, and H. Hua, Characteristics of the psychopathological status of oral lichen planus: a systematic review and meta-analysis. Aust Dent J, 2022. 67(2): p. 113-124.
Shikha, et al., Childhood oral lichen planus: a case series with review of literature. Eur Arch Paediatr Dent, 2022. 23(2): p. 341-353.
Lucchese, A., et al., Correlation between Oral Lichen Planus and Viral Infections Other Than HCV: A Systematic Review. J Clin Med, 2022. 11(18).
Hazzaa, H.H., et al., Correlation of VEGF and MMP-2 levels in oral lichen planus: An in vivo immunohistochemical study. J Oral Biol Craniofac Res, 2020. 10(4): p. 747-752.
Górski, B., Dental Implant Treatment in Patients Suffering from Oral Lichen Planus: A Narrative Review. Int J Environ Res Public Health, 2022. 19(14).
Mallah, N., et al., Diabetes mellitus and oral lichen planus: A systematic review and meta-analysis. Oral Dis, 2022. 28(8): p. 2100-2109.
Gururaj, N., et al., Diagnosis and management of oral lichen planus - Review. J Oral Maxillofac Pathol, 2021. 25(3): p. 383-393.
Rotaru, D.I., et al., Diagnostic Criteria of Oral Lichen Planus: A Narrative Review. Acta Clin Croat, 2020. 59(3): p. 513-522.
Wang, R., X. Zhang, and S. Wang, Differential genotypes of TNF-α and IL-10 for immunological diagnosis in discoid lupus erythematosus and oral lichen planus: A narrative review. Front Immunol, 2022. 13: p. 967281.
Nunes, G.P., et al., Does oral lichen planus aggravate the state of periodontal disease? A systematic review and meta-analysis. Clin Oral Investig, 2022. 26(4): p. 3357-3371.
González-Moles, M., et al., Dysplasia in oral lichen planus: relevance, controversies and challenges. A position paper. Med Oral Patol Oral Cir Bucal, 2021. 26(4): p. e541-e548.
Waingade, M., R.S. Medikeri, and P. Rathod, Effectiveness of methylene blue photosensitizers compared to that of corticosteroids in the management of oral lichen planus: a systematic review and meta-analysis. J Dent Anesth Pain Med, 2022. 22(3): p. 175-186.
Łukaszewska-Kuska, M., Z. Ślebioda, and B. Dorocka-Bobkowska, The effectiveness of topical forms of dexamethasone in the treatment of oral lichen planus- A systematic review. Oral Dis, 2022. 28(8): p. 2063-2071.
Del Vecchio, A., et al., Effects of laser photobiomodulation in the management of oral lichen planus: a literature review. Clin Ter, 2021. 172(5): p. 467-483.
Su, Z., et al., Efficacy and safety of topical administration of tacrolimus in oral lichen planus: An updated systematic review and meta-analysis of randomized controlled trials. J Oral Pathol Med, 2022. 51(1): p. 63-73.
Kalaskar, A.R., et al., Efficacy of Herbal Interventions in Oral Lichen Planus: A Systematic Review. Contemp Clin Dent, 2020. 11(4): p. 311-319.
da Silva, E.L., et al., Efficacy of topical non-steroidal immunomodulators in the treatment of oral lichen planus: a systematic review and meta-analysis. Clin Oral Investig, 2021. 25(9): p. 5149-5169.
Sahoo, A., A.K. Jena, and M. Panda, Experimental and clinical trial investigations of phyto-extracts, phyto-chemicals and phyto-formulations against oral lichen planus: A systematic review. J Ethnopharmacol, 2022. 298: p. 115591.
Seif, S., et al., The expression of salivary microRNAs in oral lichen planus: Searching for a prognostic biomarker. Pathol Res Pract, 2022. 234: p. 153923.
Li, Y., et al., The Functional Mechanism of MicroRNA in Oral Lichen Planus. J Inflamm Res, 2022. 15: p. 4261-4274.
Xie, F., A. Meves, and J.S. Lehman, The genomic and proteomic landscape in oral lichen planus versus oral squamous cell carcinoma: a scoping review. Int J Dermatol, 2022. 61(10): p. 1227-1236.
El-Howati, A., et al., Immune mechanisms in oral lichen planus. Oral Dis, 2022.
Yuwanati, M., et al., Impact of Oral Lichen Planus on Oral Health-Related Quality of Life: A Systematic Review and Meta-Analysis. Clin Pract, 2021. 11(2): p. 272-286.
Anitua, E., et al., Implant-prosthetic treatment in patients with oral lichen planus: A systematic review. Spec Care Dentist, 2022. 42(1): p. 60-72.
Moosavi, M.S. and F. Tavakol, Literature review of cancer stem cells in oral lichen planus: a premalignant lesion. Stem Cell Investig, 2021. 8: p. 25.
Ślebioda, Z. and B. Dorocka-Bobkowska, Low-level laser therapy in the treatment of recurrent aphthous stomatitis and oral lichen planus: a literature review. Postepy Dermatol Alergol, 2020. 37(4): p. 475-481.
Ghazi, N. and M. Khorasanchi, Markers associated with malignant transformation of oral lichen planus: A review article. Arch Oral Biol, 2021. 127: p. 105158.
Torrejon-Moya, A., et al., Oral Lichen Planus and Dental Implants: Protocol and Systematic Review. J Clin Med, 2020. 9(12).
Li, W., et al., Oral lichen planus induced by long-term use of antimicrobials for recurrent aphthous ulcer: A case report and literature review. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2021. 46(6): p. 666-672.
Villa, T.G., Á. Sánchez-Pérez, and C. Sieiro, Oral lichen planus: a microbiologist point of view. Int Microbiol, 2021. 24(3): p. 275-289.
Jung, W. and S. Jang, Oral Microbiome Research on Oral Lichen Planus: Current Findings and Perspectives. Biology (Basel), 2022. 11(5).
Husein-ElAhmed, H. and M. Steinhoff, Potential role of INTERLEUKIN-17 in the pathogenesis of oral lichen planus: a systematic review with META-analysis. J Eur Acad Dermatol Venereol, 2022. 36(10): p. 1735-1744.
Zanetta, P., et al., Probiotics as Potential Biological Immunomodulators in the Management of Oral Lichen Planus: What's New? Int J Mol Sci, 2022. 23(7).
Vijayan, A.K., et al., Role of Human Papilloma Virus in Malignant Transformation of Oral Lichen Planus: A Systematic Review. J Pharm Bioallied Sci, 2021. 13(Suppl 1): p. S62-s67.
Vadivel, J.K., et al., Therapeutic effectiveness of alternative medications in oral lichen planus: A systematic review. J Oral Maxillofac Pathol, 2020. 24(2): p. 344-351.
Rotaru, D., et al., Treatment trends in oral lichen planus and oral lichenoid lesions (Review). Exp Ther Med, 2020. 20(6): p. 198.
Offen, E. and J.R. Allison, What is the malignant transformation potential of oral lichen planus? Evid Based Dent, 2022. 23(1): p. 36-37.
Georgescu, S.R., et al., Advances in Understanding the Immunological Pathways in Psoriasis. Int J Mol Sci, 2019. 20(3).
Olejniczak-Staruch, I., et al., Alterations of the Skin and Gut Microbiome in Psoriasis and Psoriatic Arthritis. Int J Mol Sci, 2021. 22(8).
Dogra, S., S. D, and M. Rajagopalan, Anti-CD6 mAbs for the treatment of psoriasis. Expert Opin Biol Ther, 2020. 20(10): p. 1215-1222.
Liu, Z., L.A. Perry, and V. Morgan, The association between platelet indices and presence and severity of psoriasis: a systematic review and meta-analysis. Clin Exp Med, 2022.
Puig, L., et al., The biological basis of disease recurrence in psoriasis: a historical perspective and current models. Br J Dermatol, 2022. 186(5): p. 773-781.
Jiménez, C., et al., Biomarkers in Oral Fluids as Diagnostic Tool for Psoriasis. Life (Basel), 2022. 12(4).
Ramessur, R., et al., Biomarkers of disease progression in people with psoriasis: a scoping review. Br J Dermatol, 2022. 187(4): p. 481-493.
Corbett, M., et al., Biomarkers of systemic treatment response in people with psoriasis: a scoping review. Br J Dermatol, 2022. 187(4): p. 494-506.
Magee, C., et al., Biomarkers predictive of treatment response in psoriasis and psoriatic arthritis: a systematic review. Ther Adv Musculoskelet Dis, 2021. 13: p. 1759720x211014010.
Behfar, S., et al., A brief look at the role of monocyte chemoattractant protein-1 (CCL2) in the pathophysiology of psoriasis. Cytokine, 2018. 110: p. 226-231.
Puig, L., Cardiometabolic Comorbidities in Psoriasis and Psoriatic Arthritis. Int J Mol Sci, 2017. 19(1).
Michalska, A., et al., Cardiovascular risk in patients with plaque psoriasis and psoriatic arthritis without a clinically overt cardiovascular disease: the role of endothelial progenitor cells. Postepy Dermatol Alergol, 2020. 37(3): p. 299-305.
Furue, K., et al., The CCL20 and CCR6 axis in psoriasis. Scand J Immunol, 2020. 91(3): p. e12846.
De Jesús-Gil, C., et al., CLA(+) T Cell Response to Microbes in Psoriasis. Front Immunol, 2018. 9: p. 1488.
Mulder, M.L.M., et al., Clinical, laboratory, and genetic markers for the development or presence of psoriatic arthritis in psoriasis patients: a systematic review. Arthritis Res Ther, 2021. 23(1): p. 168.
Furue, M. and T. Kadono, The contribution of IL-17 to the development of autoimmunity in psoriasis. Innate Immun, 2019. 25(6): p. 337-343.
Ogawa, K. and Y. Okada, The current landscape of psoriasis genetics in 2020. J Dermatol Sci, 2020. 99(1): p. 2-8.
Pennington, S.R. and O. FitzGerald, Early Origins of Psoriatic Arthritis: Clinical, Genetic and Molecular Biomarkers of Progression From Psoriasis to Psoriatic Arthritis. Front Med (Lausanne), 2021. 8: p. 723944.
Anyfanti, P., et al., Endothelial Dysfunction in Psoriasis: An Updated Review. Front Med (Lausanne), 2022. 9: p. 864185.
Nowowiejska, J., A. Baran, and I. Flisiak, Fatty Acid-Binding Proteins in Psoriasis-A Review. Metabolites, 2022. 12(9).
Osmola-Mańkowska, A., et al., Genetic polymorphism in psoriasis and its meaning for the treatment efficacy in the future. Postepy Dermatol Alergol, 2018. 35(4): p. 331-337.
Membrive Jiménez, C., et al., Influence of Genetic Polymorphisms on Response to Biologics in Moderate-to-Severe Psoriasis. J Pers Med, 2021. 11(4).
Köhm, M., et al., Innovative Imaging Technique for Visualization of Vascularization and Established Methods for Detection of Musculoskeletal Inflammation in Psoriasis Patients. Front Med (Lausanne), 2020. 7: p. 468.
Pradyuth, S., et al., Insightful exploring of microRNAs in psoriasis and its targeted topical delivery. Dermatol Ther, 2020. 33(6): p. e14221.
Dobrică, E.C., et al., The Involvement of Oxidative Stress in Psoriasis: A Systematic Review. Antioxidants (Basel), 2022. 11(2).
Esquivel-García, R., et al., La psoriasis: de la investigación básica y clínica al desarrollo de nuevos tratamientos. Gac Med Mex, 2018. 154(4): p. 502-508.
Fritzsche, M.C., A.M. Buyx, and N. Hangel, Mapping ethical and social aspects of biomarker research and its application in atopic dermatitis and psoriasis: a systematic review of reason. J Eur Acad Dermatol Venereol, 2022. 36(8): p. 1201-1213.
Dorochow, E., et al., Metabolic Profiling in Rheumatoid Arthritis, Psoriatic Arthritis, and Psoriasis: Elucidating Pathogenesis, Improving Diagnosis, and Monitoring Disease Activity. J Pers Med, 2022. 12(6).
Domingo, S., et al., MicroRNAs in Several Cutaneous Autoimmune Diseases: Psoriasis, Cutaneous Lupus Erythematosus and Atopic Dermatitis. Cells, 2020. 9(12).
Honma, M. and H. Nozaki, Molecular Pathogenesis of Psoriasis and Biomarkers Reflecting Disease Activity. J Clin Med, 2021. 10(15).
Damiani, G., et al., Nanodermatology-based solutions for psoriasis: State-of-the art and future prospects. Dermatol Ther, 2019. 32(6): p. e13113.
Tokuyama, M. and T. Mabuchi, New Treatment Addressing the Pathogenesis of Psoriasis. Int J Mol Sci, 2020. 21(20).
Aydin, B., K.Y. Arga, and A.S. Karadag, Omics-Driven Biomarkers of Psoriasis: Recent Insights, Current Challenges, and Future Prospects. Clin Cosmet Investig Dermatol, 2020. 13: p. 611-625.
Owczarczyk-Saczonek, A., et al., Pathogenesis of psoriasis in the "omic" era. Part III. Metabolic disorders, metabolomics, nutrigenomics in psoriasis. Postepy Dermatol Alergol, 2020. 37(4): p. 452-467.
Tampa, M., et al., The Pathophysiological Mechanisms and the Quest for Biomarkers in Psoriasis, a Stress-Related Skin Disease. Dis Markers, 2018. 2018: p. 5823684.
Ovejero-Benito, M.C., et al., Pharmacogenetics and Pharmacogenomics in Moderate-to-Severe Psoriasis. Am J Clin Dermatol, 2018. 19(2): p. 209-222.
Muñoz-Aceituno, E., et al., Pharmacogenetics Update on Biologic Therapy in Psoriasis. Medicina (Kaunas), 2020. 56(12).
Caputo, V., et al., Pharmacogenomics: An Update on Biologics and Small-Molecule Drugs in the Treatment of Psoriasis. Genes (Basel), 2021. 12(9).
Kivelevitch, D., et al., Pharmacotherapeutic approaches for treating psoriasis in difficult-to-treat areas. Expert Opin Pharmacother, 2018. 19(6): p. 561-575.
Sajja, A.P., et al., Potential Immunological Links Between Psoriasis and Cardiovascular Disease. Front Immunol, 2018. 9: p. 1234.
Shah, N., S. Sandigursky, and A. Mor, The Potential Role of Inhibitory Receptors in the Treatment of Psoriasis. Bull Hosp Jt Dis (2013), 2017. 75(3): p. 155-163.
Aleem, D. and H. Tohid, Pro-inflammatory Cytokines, Biomarkers, Genetics and the Immune System: A Mechanistic Approach of Depression and Psoriasis. Rev Colomb Psiquiatr (Engl Ed), 2018. 47(3): p. 177-186.
Reid, C., et al., Progress to Date in Advancing Stratified Medicine in Psoriasis. Am J Clin Dermatol, 2020. 21(5): p. 619-626.
Yadav, K., D. Singh, and M.R. Singh, Protein biomarker for psoriasis: A systematic review on their role in the pathomechanism, diagnosis, potential targets and treatment of psoriasis. Int J Biol Macromol, 2018. 118(Pt B): p. 1796-1810.
Sobolev, V.V., et al., Proteomic Studies of Psoriasis. Biomedicines, 2022. 10(3).
Chularojanamontri, L., et al., Proteomics in Psoriasis. Int J Mol Sci, 2019. 20(5).
Kaur, S., K. Kingo, and M. Zilmer, Psoriasis and Cardiovascular Risk-Do Promising New Biomarkers Have Clinical Impact? Mediators Inflamm, 2017. 2017: p. 7279818.
Polak, K., et al., Psoriasis and Gut Microbiome-Current State of Art. Int J Mol Sci, 2021. 22(9).
Qi, F., et al., Psoriasis to Psoriatic Arthritis: The Application of Proteomics Technologies. Front Med (Lausanne), 2021. 8: p. 681172.
Gisondi, P., et al., Reducing the Risk of Developing Psoriatic Arthritis in Patients with Psoriasis. Psoriasis (Auckl), 2022. 12: p. 213-220.
Benezeder, T. and P. Wolf, Resolution of plaque-type psoriasis: what is left behind (and reinitiates the disease). Semin Immunopathol, 2019. 41(6): p. 633-644.
Matsumoto, Y., et al., The risk of interstitial lung disease during biological treatment in Japanese patients with psoriasis. Clin Exp Dermatol, 2020. 45(7): p. 853-858.
Borgia, F., et al., Role of Epithelium-Derived Cytokines in Atopic Dermatitis and Psoriasis: Evidence and Therapeutic Perspectives. Biomolecules, 2021. 11(12).
Wang, W.M. and H.Z. Jin, Role of Neutrophils in Psoriasis. J Immunol Res, 2020. 2020: p. 3709749.
Ciążyńska, M., et al., The Role of NLRP1, NLRP3, and AIM2 Inflammasomes in Psoriasis: Review. Int J Mol Sci, 2021. 22(11).
Zhang, X. and Y. He, The Role of Nociceptive Neurons in the Pathogenesis of Psoriasis. Front Immunol, 2020. 11: p. 1984.
Owczarczyk-Saczonek, A., J. Czerwińska, and W. Placek, The role of regulatory T cells and anti-inflammatory cytokines in psoriasis. Acta Dermatovenerol Alp Pannonica Adriat, 2018. 27(1): p. 17-23.
Kurpet, K. and G. Chwatko, S100 Proteins as Novel Therapeutic Targets in Psoriasis and Other Autoimmune Diseases. Molecules, 2022. 27(19).
Asa'ad, F., et al., Saliva as a Future Field in Psoriasis Research. Biomed Res Int, 2018. 2018: p. 7290913.
Kyriakou, A., et al., Serum Leptin, Resistin, and Adiponectin Concentrations in Psoriasis: A Meta-Analysis of Observational Studies. Dermatology, 2017. 233(5): p. 378-389.
Pourani, M.R., et al., Soluble biomarkers for diagnosis, monitoring, and therapeutic response assessment in psoriasis. J Dermatolog Treat, 2022. 33(4): p. 1967-1974.
Gisondi, P., et al., State of the art and pharmacological pipeline of biologics for chronic plaque psoriasis. Curr Opin Pharmacol, 2019. 46: p. 90-99.
Boehncke, W.H., Systemic Inflammation and Cardiovascular Comorbidity in Psoriasis Patients: Causes and Consequences. Front Immunol, 2018. 9: p. 579.
Camela, E., et al., Towards Personalized Medicine in Psoriasis: Current Progress. Psoriasis (Auckl), 2022. 12: p. 231-250.
Tang, L., et al., Transcription Factor Retinoid-Related Orphan Receptor γt: A Promising Target for the Treatment of Psoriasis. Front Immunol, 2018. 9: p. 1210.
Krishnan, V.S. and S. Kõks, Transcriptional Basis of Psoriasis from Large Scale Gene Expression Studies: The Importance of Moving towards a Precision Medicine Approach. Int J Mol Sci, 2022. 23(11).
Rioux, G., et al., Transcriptome Profiling Analyses in Psoriasis: A Dynamic Contribution of Keratinocytes to the Pathogenesis. Genes (Basel), 2020. 11(10).
Timis, T.L. and R.I. Orasan, Understanding psoriasis: Role of miRNAs. Biomed Rep, 2018. 9(5): p. 367-374.
Boehncke, W.H. and N.C. Brembilla, Unmet Needs in the Field of Psoriasis: Pathogenesis and Treatment. Clin Rev Allergy Immunol, 2018. 55(3): p. 295-311.
Li, K., et al., ACPA-negative rheumatoid arthritis: From immune mechanisms to clinical translation. EBioMedicine, 2022. 83: p. 104233.
Torequl Islam, M., et al., Activities and Molecular Mechanisms of Diterpenes, Diterpenoids, and Their Derivatives in Rheumatoid Arthritis. Evid Based Complement Alternat Med, 2022. 2022: p. 4787643.
Monu, P. Agnihotri, and S. Biswas, AGE/Non-AGE Glycation: An Important Event in Rheumatoid Arthritis Pathophysiology. Inflammation, 2022. 45(2): p. 477-496.
Abdelhafiz, D., et al., Biomarkers for the diagnosis and treatment of rheumatoid arthritis - a systematic review. Postgrad Med, 2022: p. 1-10.
Wei, K., et al., Biomarkers to Predict DMARDs Efficacy and Adverse Effect in Rheumatoid Arthritis. Front Immunol, 2022. 13: p. 865267.
Miriam Jose, A. and M. Rasool, Choline kinase: An underappreciated rheumatoid arthritis therapeutic target. Life Sci, 2022. 309: p. 121031.
Han, R., et al., Conventional disease-modifying anti-rheumatic drugs combined with Chinese Herbal Medicines for rheumatoid arthritis: A systematic review and meta-analysis. J Tradit Complement Med, 2022. 12(5): p. 437-446.
Gul, H., K. Harnden, and B. Saleem, Defining the Optimal Strategies for Achieving Drug-Free Remission in Rheumatoid Arthritis: A Narrative Review. Healthcare (Basel), 2021. 9(12).
Mustufvi, Z., et al., Does periodontal treatment improve rheumatoid arthritis disease activity? A systematic review. Rheumatol Adv Pract, 2022. 6(2): p. rkac061.
Modarresi Chahardehi, A., et al., The effect of exercise on patients with rheumatoid arthritis on the modulation of inflammation. Clin Exp Rheumatol, 2022. 40(7): p. 1420-1431.
Komici, K., et al., Endothelial Progenitor Cells and Rheumatoid Arthritis: Response to Endothelial Dysfunction and Clinical Evidences. Int J Mol Sci, 2021. 22(24).
Sakthiswary, R., S.S. Shaharir, and A.A. Wahab, Frequency and Clinical Significance of Elevated IgG4 in Rheumatoid Arthritis: A Systematic Review. Biomedicines, 2022. 10(3).
Han, J.J., X.Q. Wang, and X.A. Zhang, Functional Interactions Between lncRNAs/circRNAs and miRNAs: Insights Into Rheumatoid Arthritis. Front Immunol, 2022. 13: p. 810317.
Janahiraman, S., et al., Genetic Biomarkers as Predictors of Response to Tocilizumab in Rheumatoid Arthritis: A Systematic Review and Meta-Analysis. Genes (Basel), 2022. 13(7).
Zhao, T., et al., Gut microbiota and rheumatoid arthritis: From pathogenesis to novel therapeutic opportunities. Front Immunol, 2022. 13: p. 1007165.
Jiang, Q., et al., Inflammasome and Its Therapeutic Targeting in Rheumatoid Arthritis. Front Immunol, 2021. 12: p. 816839.
Deng, L., et al., Influence of Iguratimod on Bone Metabolism in Patients with Rheumatoid Arthritis: A Meta-analysis. Int J Clin Pract, 2022. 2022: p. 5684293.
Wu, H., et al., LncRNA Expression Profiles in Systemic Lupus Erythematosus and Rheumatoid Arthritis: Emerging Biomarkers and Therapeutic Targets. Front Immunol, 2021. 12: p. 792884.
Ravaei, A., et al., lncRNA-mediated synovitis in rheumatoid arthritis: A perspective for biomarker development. Prog Biophys Mol Biol, 2022.
Huang, W., et al., LncRNAs and Rheumatoid Arthritis: From Identifying Mechanisms to Clinical Investigation. Front Immunol, 2021. 12: p. 807738.
Roodenrijs, N.M.T., et al., Mechanisms underlying DMARD inefficacy in difficult-to-treat rheumatoid arthritis: a narrative review with systematic literature search. Rheumatology (Oxford), 2022. 61(9): p. 3552-3566.
Yoon, N., et al., Metabolomics in Autoimmune Diseases: Focus on Rheumatoid Arthritis, Systemic Lupus Erythematous, and Multiple Sclerosis. Metabolites, 2021. 11(12).
Xu, L., et al., Metabolomics in rheumatoid arthritis: Advances and review. Front Immunol, 2022. 13: p. 961708.
Chang, C., et al., MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol, 2022. 13: p. 838884.
Tanase, D.M., et al., MicroRNAs (miRNAs) in Cardiovascular Complications of Rheumatoid Arthritis (RA): What Is New? Int J Mol Sci, 2022. 23(9).
Kmiołek, T. and A. Paradowska-Gorycka, miRNAs as Biomarkers and Possible Therapeutic Strategies in Rheumatoid Arthritis. Cells, 2022. 11(3).
Tsikas, D. and M. Mikuteit, N-Acetyl-L-cysteine in human rheumatoid arthritis and its effects on nitric oxide (NO) and malondialdehyde (MDA): analytical and clinical considerations. Amino Acids, 2022. 54(9): p. 1251-1260.
Dammacco, R., et al., Natural and iatrogenic ocular manifestations of rheumatoid arthritis: a systematic review. Int Ophthalmol, 2022. 42(2): p. 689-711.
Florescu, A., et al., Novel Biomarkers, Diagnostic and Therapeutic Approach in Rheumatoid Arthritis Interstitial Lung Disease-A Narrative Review. Biomedicines, 2022. 10(6).
Garaffoni, C., et al., Novel insights into the management of rheumatoid arthritis: one year in review 2022. Clin Exp Rheumatol, 2022. 40(7): p. 1247-1257.
Madrid-Paredes, A., J. Martín, and A. Márquez, -Omic Approaches and Treatment Response in Rheumatoid Arthritis. Pharmaceutics, 2022. 14(8).
Bhamidipati, K. and K. Wei, Precision medicine in rheumatoid arthritis. Best Pract Res Clin Rheumatol, 2022. 36(1): p. 101742.
Wei, M. and C.Q. Chu, Prediction of treatment response: Personalized medicine in the management of rheumatoid arthritis. Best Pract Res Clin Rheumatol, 2022. 36(1): p. 101741.
Mueller, A.L., et al., Recent Advances in Understanding the Pathogenesis of Rheumatoid Arthritis: New Treatment Strategies. Cells, 2021. 10(11).
Bartikoski, B.J., et al., A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities. Metabolites, 2022. 12(5).
Wu, C. and C. Kong, Rheumatoid arthritis complicating antineutrophil cytoplasmic antibody-associated nephritis: A case report and literature review. Asian J Surg, 2022. 45(5): p. 1212-1213.
Jang, S., E.J. Kwon, and J.J. Lee, Rheumatoid Arthritis: Pathogenic Roles of Diverse Immune Cells. Int J Mol Sci, 2022. 23(2).
Kowalski, E.N., et al., A Roadmap for Investigating Preclinical Autoimmunity Using Patient-Oriented and Epidemiologic Study Designs: Example of Rheumatoid Arthritis. Front Immunol, 2022. 13: p. 890996.
Cutolo, M., et al., The Role of M1/M2 Macrophage Polarization in Rheumatoid Arthritis Synovitis. Front Immunol, 2022. 13: p. 867260.
Jiang, P., et al., SFRP1 Negatively Modulates Pyroptosis of Fibroblast-Like Synoviocytes in Rheumatoid Arthritis: A Review. Front Immunol, 2022. 13: p. 903475.
Khodadust, F., et al., Systematic Review: Targeted Molecular Imaging of Angiogenesis and Its Mediators in Rheumatoid Arthritis. Int J Mol Sci, 2022. 23(13).
Wang, Z., et al., Toward Overcoming Treatment Failure in Rheumatoid Arthritis. Front Immunol, 2021. 12: p. 755844.
Battat, R. and W.J. Sandborn, Advances in the Comprehensive Management of Postoperative Crohn's Disease. Clin Gastroenterol Hepatol, 2022. 20(7): p. 1436-1449.
Goran, L., et al., Capsule endoscopy: Current status and role in Crohn's disease. World J Gastrointest Endosc, 2018. 10(9): p. 184-192.
Romano, C., et al., Choosing the most appropriate biologic therapy for Crohn's disease according to concomitant extra-intestinal manifestations, comorbidities, or physiologic conditions. Expert Opin Biol Ther, 2020. 20(1): p. 49-62.
Watanabe, K., Clinical management for small bowel of Crohn's disease in the treat-to-target era: now is the time to optimize treatment based on the dominant lesion. Intest Res, 2020. 18(4): p. 347-354.
Dąbkowski, K., et al., Clinical significance of endoscopic findings in the upper gastrointestinal tract in Crohn's disease. Scand J Gastroenterol, 2019. 54(9): p. 1075-1080.
Greer, M.C., et al., Clinical-stage Approaches for Imaging Chronic Inflammation and Fibrosis in Crohn's Disease. Inflamm Bowel Dis, 2020. 26(10): p. 1509-1523.
Gajendran, M., et al., A comprehensive review and update on Crohn's disease. Dis Mon, 2018. 64(2): p. 20-57.
Roda, G., et al., Crohn's disease. Nat Rev Dis Primers, 2020. 6(1): p. 22.
Wang, M.H. and M.F. Picco, Crohn's Disease: Genetics Update. Gastroenterol Clin North Am, 2017. 46(3): p. 449-461.
Mitselos, I.V., et al., Current noninvasive modalities in Crohn's disease monitoring. Ann Gastroenterol, 2021. 34(6): p. 770-780.
Marlicz, W., et al., Emerging concepts in non-invasive monitoring of Crohn's disease. Therap Adv Gastroenterol, 2018. 11: p. 1756284818769076.
Bane, O., et al., Emerging Imaging Biomarkers in Crohn Disease. Top Magn Reson Imaging, 2021. 30(1): p. 31-41.
Miyoshi, J., M.A. Sofia, and J.F. Pierre, The evidence for fungus in Crohn's disease pathogenesis. Clin J Gastroenterol, 2018. 11(6): p. 449-456.
White, J.R., V. Jairath, and G.W. Moran, Evolution of treatment targets in Crohn's disease. Best Pract Res Clin Gastroenterol, 2019. 38-39: p. 101599.
Chateau, T. and L. Peyrin-Biroulet, Evolving therapeutic goals in Crohn's disease management. United European Gastroenterol J, 2020. 8(2): p. 133-139.
Mager, R., et al., Fibrotic Strictures in Crohn's Disease: Mechanisms and Predictive Factors. Curr Drug Targets, 2021. 22(2): p. 241-251.
Danese, S., et al., Identification of Endpoints for Development of Antifibrosis Drugs for Treatment of Crohn's Disease. Gastroenterology, 2018. 155(1): p. 76-87.
Anka Idrissi, D., et al., IL-1 and CD40/CD40L platelet complex: elements of induction of Crohn's disease and new therapeutic targets. Arch Pharm Res, 2021. 44(1): p. 117-132.
Wu, Y. and J. Shen, Innate Lymphoid Cells in Crohn's Disease. Front Immunol, 2020. 11: p. 554880.
Pauwen, N.Y., et al., Integrated Care for Crohn's Disease: A Plea for the Development of Clinical Decision Support Systems. J Crohns Colitis, 2018. 12(12): p. 1499-1504.
Mojtahed, A. and M.S. Gee, Magnetic resonance enterography evaluation of Crohn disease activity and mucosal healing in young patients. Pediatr Radiol, 2018. 48(9): p. 1273-1279.
Rimola, J. and N. Capozzi, Magnetic Resonance in Crohn Disease: Imaging Biomarkers in Assessing Response to Therapy. Magn Reson Imaging Clin N Am, 2020. 28(1): p. 45-53.
Guimarães, L.S., et al., Magnetic Resonance in Crohn's Disease: Diagnosis, Disease Burden, and Classification. Magn Reson Imaging Clin N Am, 2020. 28(1): p. 31-44.
Caruso, C., MIG in Crohn's disease. Clin Ter, 2019. 170(3): p. e206-e210.
Yamamoto, T. and T. Shimoyama, Monitoring and detection of disease recurrence after resection for Crohn's disease: the role of non-invasive fecal biomarkers. Expert Rev Gastroenterol Hepatol, 2017. 11(10): p. 899-909.
Yao, Y., Q. Feng, and J. Shen, Myosin light chain kinase regulates intestinal permeability of mucosal homeostasis in Crohn's disease. Expert Rev Clin Immunol, 2020. 16(12): p. 1127-1141.
Singh, S., Network meta-analysis to inform positioning of biologics in patients with Crohn's disease: Promise and perils. Best Pract Res Clin Gastroenterol, 2019. 38-39: p. 101614.
Zhou, L.Y., et al., Noncoding RNAs as Promising Diagnostic Biomarkers and Therapeutic Targets in Intestinal Fibrosis of Crohn's Disease: The Path From Bench to Bedside. Inflamm Bowel Dis, 2021. 27(7): p. 971-982.
Allocca, M., et al., Noninvasive Multimodal Methods to Differentiate Inflamed vs Fibrotic Strictures in Patients With Crohn's Disease. Clin Gastroenterol Hepatol, 2019. 17(12): p. 2397-2415.
Sandall, A.M., C.L. Wall, and M.C.E. Lomer, Nutrition Assessment in Crohn's Disease using Anthropometric, Biochemical, and Dietary Indexes: A Narrative Review. J Acad Nutr Diet, 2020. 120(4): p. 624-640.
Sun, X.L., et al., Optimized timing of using infliximab in perianal fistulizing Crohn's disease. World J Gastroenterol, 2020. 26(14): p. 1554-1563.
Alemany-Cosme, E., et al., Oxidative Stress in the Pathogenesis of Crohn's Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants (Basel), 2021. 10(1).
Greer, M.C. and S.A. Taylor, Perianal Imaging in Crohn Disease: Current Status With a Focus on MRI, From the AJR Special Series on Imaging of Inflammation. AJR Am J Roentgenol, 2022. 218(5): p. 781-792.
Noor, N.M., et al., Personalised medicine in Crohn's disease. Lancet Gastroenterol Hepatol, 2020. 5(1): p. 80-92.
Mainoli, B., et al., Proteomics and Imaging in Crohn's Disease: TAILS of Unlikely Allies. Trends Pharmacol Sci, 2020. 41(2): p. 74-84.
Wilkens, R., et al., Relevance of monitoring transmural disease activity in patients with Crohn's disease: current status and future perspectives. Therap Adv Gastroenterol, 2021. 14: p. 17562848211006672.
Mitrev, N., et al., Review of exclusive enteral therapy in adult Crohn's disease. BMJ Open Gastroenterol, 2021. 8(1).
Mello, J.D.C., et al., The role of chemokines and adipokines as biomarkers of Crohn's disease activity: a systematic review of the literature. Am J Transl Res, 2021. 13(8): p. 8561-8574.
Hornschuh, M., et al., The role of epigenetic modifications for the pathogenesis of Crohn's disease. Clin Epigenetics, 2021. 13(1): p. 108.
Sensi, B., et al., The Role of Inflammation in Crohn's Disease Recurrence after Surgical Treatment. J Immunol Res, 2020. 2020: p. 8846982.
Gallego, J.C. and A. Echarri, Role of magnetic resonance imaging in the management of perianal Crohn's disease. Insights Imaging, 2018. 9(1): p. 47-58.
Finamore, A., I. Peluso, and O. Cauli, Salivary Stress/Immunological Markers in Crohn's Disease and Ulcerative Colitis. Int J Mol Sci, 2020. 21(22).
He, J.S., et al., Serum biomarkers of fibrostenotic Crohn's disease: Where are we now? J Dig Dis, 2020. 21(6): p. 336-341.
Brand, E.C., et al., Systematic Review and External Validation of Prediction Models Based on Symptoms and Biomarkers for Identifying Endoscopic Activity in Crohn's Disease. Clin Gastroenterol Hepatol, 2020. 18(8): p. 1704-1718.
Swaminath, A., et al., Systematic review with meta-analysis: enteral nutrition therapy for the induction of remission in paediatric Crohn's disease. Aliment Pharmacol Ther, 2017. 46(7): p. 645-656.
Mattoo, V.Y., et al., Systematic review: efficacy of escalated maintenance anti-tumour necrosis factor therapy in Crohn's disease. Aliment Pharmacol Ther, 2021. 54(3): p. 249-266.
Gergely, M. and P. Deepak, Tools for the Diagnosis and Management of Crohn's Disease. Gastroenterol Clin North Am, 2022. 51(2): p. 213-239.
Ma, C., et al., Update on C-reactive protein and fecal calprotectin: are they accurate measures of disease activity in Crohn's disease? Expert Rev Gastroenterol Hepatol, 2019. 13(4): p. 319-330.
Ma, C., et al., What is the role of C-reactive protein and fecal calprotectin in evaluating Crohn's disease activity? Best Pract Res Clin Gastroenterol, 2019. 38-39: p. 101602.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Since making research freely available supports a greater global exchange of knowledge, PreferPub provides immediate open access to its published books under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (CC BY-NC 4.0). This license allows others to share, copy, and redistribute the material in any medium or format, as well as adapt, remix, transform, and build upon the material, as long as the use is non-commercial and appropriate credit is given to the original work.