AI and Deep Learning in Understanding the Etiology and Pathogenesis of Autoimmune Diseases

Authors

  • Amirhossein Rigi
  • Khadijeh Harati
  • Mohammadjavad Abbaspour
  • Seyedeh Farinaz Fattahpour
  • Pegah Hosseini
  • Atousa Moghadam Fard
  • Mina Hobbi
  • Golsa Babapour
  • Negar Babapour
  • Naghmeh Nikben
  • Parisa Doroudgar
  • Reyhaneh Mehrvar
  • Sara Hosseinmirzaei
  • Nasim Razavi
  • Hessam Nikseresht
  • Vida Niakosari
  • Reza Morovatshoar
  • Peiman Mazaheri
  • Seyed Mohammad Shahab Mirabedini
  • Laya Taghipour
  • Amirali Fallahian
  • Hiva Rahmati
  • Reza Babakhani
  • Mohsen Heidari
  • Morteza Alipour
  • Shila Taherlou
  • Azadeh Taherlou
  • Mohammaderfan Ghazanfarpour
  • Shaheen Shahriari
  • Hossein Pilva
  • Delnavaz Jan
  • Sana Baghizadeh
  • Hamed Sabzehie
  • Niloofar Khansari Nejad
  • Parham Rahmani

Keywords:

Artificial Intelligence, Deep Learning , Etiology , Pathogenesis , Autoimmune

Abstract

Autoimmune diseases arise when the immune system mistakenly attacks the body’s own tissues, leading to chronic inflammation and organ damage. These disorders are complex, influenced by genetic, epigenetic, environmental, and immunological factors. Despite extensive research, many aspects of their etiology and pathogenesis remain unclear. Artificial intelligence (AI) and deep learning (DL) have emerged as transformative tools in unraveling the complexities of autoimmune diseases. AI, with its ability to analyze large datasets, enables researchers to identify patterns and relationships that are otherwise difficult to detect. In the context of autoimmune diseases, AI is applied to analyze omics data—genomics, proteomics, transcriptomics, and metabolomics—to uncover genetic variants, immune pathways, and biomarkers associated with disease susceptibility and progression. For instance, machine learning (ML) algorithms have identified critical risk loci and differentially expressed genes in diseases such as rheumatoid arthritis and lupus. Deep learning, a subset of AI, excels in processing high-dimensional data and detecting intricate patterns. DL techniques have been employed in single-cell RNA sequencing to identify immune cell populations driving autoimmune responses. These models also integrate imaging and histopathological data to detect subtle tissue changes indicative of early disease onset. Moreover, AI-driven bioinformatics tools have advanced understanding of immune system dysregulation, including cytokine networks and immune cell interactions. They also help study environmental triggers, such as microbiome alterations, that influence autoimmunity. AI and DL are not only providing insights into disease mechanisms but also enhancing diagnostics, enabling personalized treatment strategies, and accelerating drug discovery. As these technologies continue to evolve, they promise to illuminate the complexities of autoimmune diseases, paving the way for innovative therapeutic interventions and improved patient outcomes.

References

Ceccarelli F, Natalucci F, Picciariello L, Ciancarella C, Dolcini G, Gattamelata A, et al. Application of Machine Learning Models in Systemic Lupus Erythematosus. Int J Mol Sci. 2023;24(5).

Cheng J, Liang T, Xie XQ, Feng Z, Meng L. A new era of antibody discovery: an in-depth review of AI-driven approaches. Drug Discov Today. 2024;29(6):103984.

Cheong KX, Ong CJT, Chandrasekaran PR, Zhao J, Teo KYC, Mathur R. Review of Retinal Imaging Modalities for Hydroxychloroquine Retinopathy. Diagnostics (Basel). 2023;13(10).

Chinnadurai S, Mahadevan S, Navaneethakrishnan B, Mamadapur M. Decoding Applications of Artificial Intelligence in Rheumatology. Cureus. 2023;15(9):e46164.

Choi MY, Costenbader KH, Fritzler MJ. Environment and systemic autoimmune rheumatic diseases: an overview and future directions. Front Immunol. 2024;15:1456145.

Cohen Y, Valdés-Mas R, Elinav E. The Role of Artificial Intelligence in Deciphering Diet-Disease Relationships: Case Studies. Annu Rev Nutr. 2023;43:225-50.

Collorone S, Coll L, Lorenzi M, Lladó X, Sastre-Garriga J, Tintoré M, et al. Artificial intelligence applied to MRI data to tackle key challenges in multiple sclerosis. Mult Scler. 2024;30(7):767-84.

Dahiya DS, Al-Haddad M, Chandan S, Gangwani MK, Aziz M, Mohan BP, et al. Artificial Intelligence in Endoscopic Ultrasound for Pancreatic Cancer: Where Are We Now and What Does the Future Entail? J Clin Med. 2022;11(24).

Dana D, Gadhiya SV, St Surin LG, Li D, Naaz F, Ali Q, et al. Deep Learning in Drug Discovery and Medicine; Scratching the Surface. Molecules. 2018;23(9).

Danieli MG, Tonacci A, Paladini A, Longhi E, Moroncini G, Allegra A, et al. A machine learning analysis to predict the response to intravenous and subcutaneous immunoglobulin in inflammatory myopathies. A proposal for a future multi-omics approach in autoimmune diseases. Autoimmun Rev. 2022;21(6):103105.

Demuth S, Ed-Driouch C, Dumas C, Laplaud D, Edan G, Vince N, et al. Scoping review of clinical decision support systems for multiple sclerosis management: Leveraging information technology and massive health data. Eur J Neurol. 2024:e16363.

Dhanalakshmi M, Sruthi D, Jinuraj KR, Das K, Dave S, Andal NM, et al. Mannose: a potential saccharide candidate in disease management. Med Chem Res. 2023;32(3):391-408.

Diakou I, Papakonstantinou E, Papageorgiou L, Pierouli K, Dragoumani K, Spandidos DA, et al. Multiple sclerosis and computational biology (Review). Biomed Rep. 2022;17(6):96.

Elhadary M, Elshoeibi AM, Badr A, Elsayed B, Metwally O, Elshoeibi AM, et al. Revolutionizing chronic lymphocytic leukemia diagnosis: A deep dive into the diverse applications of machine learning. Blood Rev. 2023;62:101134.

Elian V, Popovici V, Ozon EA, Musuc AM, Fița AC, Rusu E, et al. Current Technologies for Managing Type 1 Diabetes Mellitus and Their Impact on Quality of Life-A Narrative Review. Life (Basel). 2023;13(8).

Fan XX, Pan HD, Li Y, Guo RJ, Leung EL, Liu L. Novel therapeutic strategy for cancer and autoimmune conditions: Modulating cell metabolism and redox capacity. Pharmacol Ther. 2018;191:148-61.

Farabi Maleki S, Yousefi M, Afshar S, Pedrammehr S, Lim CP, Jafarizadeh A, et al. Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls. Semin Ophthalmol. 2024;39(4):271-88.

Flevaris K, Kontoravdi C. Immunoglobulin G N-glycan Biomarkers for Autoimmune Diseases: Current State and a Glycoinformatics Perspective. Int J Mol Sci. 2022;23(9).

Floreani A, Gabbia D, De Martin S. Current Perspectives on the Molecular and Clinical Relationships between Primary Biliary Cholangitis and Hepatocellular Carcinoma. Int J Mol Sci. 2024;25(4).

Fritzler MJ, Choi MY, Satoh M, Mahler M. Autoantibody Discovery, Assay Development and Adoption: Death Valley, the Sea of Survival and Beyond. Front Immunol. 2021;12:679613.

Gerussi A, Scaravaglio M, Cristoferi L, Verda D, Milani C, De Bernardi E, et al. Artificial intelligence for precision medicine in autoimmune liver disease. Front Immunol. 2022;13:966329.

Gilvaz VJ, Reginato AM. Artificial intelligence in rheumatoid arthritis: potential applications and future implications. Front Med (Lausanne). 2023;10:1280312.

Giudice LC, Oskotsky TT, Falako S, Opoku-Anane J, Sirota M. Endometriosis in the era of precision medicine and impact on sexual and reproductive health across the lifespan and in diverse populations. Faseb j. 2023;37(9):e23130.

González-González MA, Conde SV, Latorre R, Thébault SC, Pratelli M, Spitzer NC, et al. Bioelectronic Medicine: a multidisciplinary roadmap from biophysics to precision therapies. Front Integr Neurosci. 2024;18:1321872.

Hartmann Tolić I, Habijan M, Galić I, Nyarko EK. Advancements in Computer-Aided Diagnosis of Celiac Disease: A Systematic Review. Biomimetics (Basel). 2024;9(8).

Has C, Karakioulaki M. [Molecular pathology of skin fragility]. Dermatologie (Heidelb). 2024;75(12):907-12.

Huang J, Fan X, Liu W. Applications and Prospects of Artificial Intelligence-Assisted Endoscopic Ultrasound in Digestive System Diseases. Diagnostics (Basel). 2023;13(17).

Irure-Ventura J, López-Hoyos M. The Past, Present, and Future in Antinuclear Antibodies (ANA). Diagnostics (Basel). 2022;12(3).

Knevel R, Liao KP. From real-world electronic health record data to real-world results using artificial intelligence. Ann Rheum Dis. 2023;82(3):306-11.

Kolanu ND, Awan NA, Butt AI, Reza T, Almadhoun M, Janoowala T, et al. From Antibodies to Artificial Intelligence: A Comprehensive Review of Diagnostic Challenges in Hashimoto's Thyroiditis. Cureus. 2024;16(2):e54393.

Kulbay M, Tanya SM, Tuli N, Dahoud J, Dahoud A, Alsaleh F, et al. A Comprehensive Review of Thyroid Eye Disease Pathogenesis: From Immune Dysregulations to Novel Diagnostic and Therapeutic Approaches. Int J Mol Sci. 2024;25(21).

Li H, Chiang AWT, Lewis NE. Artificial intelligence in the analysis of glycosylation data. Biotechnol Adv. 2022;60:108008.

Li Pomi F, Papa V, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Artificial Intelligence: A Snapshot of Its Application in Chronic Inflammatory and Autoimmune Skin Diseases. Life (Basel). 2024;14(4).

Lovinfosse P, Hustinx R. The role of PET imaging in inflammatory bowel diseases: state-of-the-art review. Q J Nucl Med Mol Imaging. 2022;66(3):206-17.

Lung T, Sakem B, Risch L, Würzner R, Colucci G, Cerny A, et al. The complement system in liver diseases: Evidence-based approach and therapeutic options. J Transl Autoimmun. 2019;2:100017.

Mack S, Flattet Y, Bichard P, Frossard JL. Recent advances in the management of autoimmune pancreatitis in the era of artificial intelligence. World J Gastroenterol. 2022;28(48):6867-74.

Mahroum N, Elsalti A, Al Shawaf M, Darkhabani M, Alwani A, Seida R, et al. Artificial intelligence meets the world experts; updates and novel therapies in autoimmunity - The 14th international congress on autoimmunity 2024 (AUTO14), Ljubljana. Autoimmun Rev. 2024;24(1):103698.

Mandel A, Schwarting A, Cavagna L, Triantafyllias K. Novel Surrogate Markers of Cardiovascular Risk in the Setting of Autoimmune Rheumatic Diseases: Current Data and Implications for the Future. Front Med (Lausanne). 2022;9:820263.

Manuelyan K, Dragolov M, Drenovska K, Shahid M, Vassileva S. Artificial intelligence in autoimmune bullous dermatoses. Clin Dermatol. 2024;42(5):426-33.

Mehrlatifan S, Molla RY. AI-assisted assessment of fall risk in multiple sclerosis: A systematic literature review. Mult Scler Relat Disord. 2024;92:105918.

Mentis AA, Lee D, Roussos P. Applications of artificial intelligence-machine learning for detection of stress: a critical overview. Mol Psychiatry. 2024;29(6):1882-94.

Moazami F, Lefevre-Utile A, Papaloukas C, Soumelis V. Machine Learning Approaches in Study of Multiple Sclerosis Disease Through Magnetic Resonance Images. Front Immunol. 2021;12:700582.

Moingeon P. Artificial intelligence-driven drug development against autoimmune diseases. Trends Pharmacol Sci. 2023;44(7):411-24.

Momtazmanesh S, Nowroozi A, Rezaei N. Artificial Intelligence in Rheumatoid Arthritis: Current Status and Future Perspectives: A State-of-the-Art Review. Rheumatol Ther. 2022;9(5):1249-304.

Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL, Jr. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res. 2023;16:4633-60.

Nam D, Chapiro J, Paradis V, Seraphin TP, Kather JN. Artificial intelligence in liver diseases: Improving diagnostics, prognostics and response prediction. JHEP Rep. 2022;4(4):100443.

Peng J, Jury EC, Dönnes P, Ciurtin C. Machine Learning Techniques for Personalised Medicine Approaches in Immune-Mediated Chronic Inflammatory Diseases: Applications and Challenges. Front Pharmacol. 2021;12:720694.

Prajapati RN, Bhushan B, Singh K, Chopra H, Kumar S, Agrawal M, et al. Recent Advances in Pharmaceutical Design: Unleashing the Potential of Novel Therapeutics. Curr Pharm Biotechnol. 2024;25(16):2060-77.

Rahat B, Ali T, Sapehia D, Mahajan A, Kaur J. Circulating Cell-Free Nucleic Acids as Epigenetic Biomarkers in Precision Medicine. Front Genet. 2020;11:844.

Rodríguez S. Artificial intelligence in multiple sclerosis management: Challenges in a new era. Mult Scler Relat Disord. 2024;86:105611.

Romerio A, Peri F. Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Front Immunol. 2020;11:1210.

Sadeghi P, Karimi H, Lavafian A, Rashedi R, Samieefar N, Shafiekhani S, et al. Machine learning and artificial intelligence within pediatric autoimmune diseases: applications, challenges, future perspective. Expert Rev Clin Immunol. 2024;20(10):1219-36.

Seyhan AA, Carini C. Are innovation and new technologies in precision medicine paving a new era in patients centric care? J Transl Med. 2019;17(1):114.

Shen Y, Voigt A, Leng X, Rodriguez AA, Nguyen CQ. A current and future perspective on T cell receptor repertoire profiling. Front Genet. 2023;14:1159109.

Shende P, Rodrigues B, Gaud RS. Transplantation and Alternatives to Treat Autoimmune Diseases. Adv Exp Med Biol. 2018;1089:59-72.

Shiha MG, Yusuf A, Sanders DS. Role of endoscopy in the diagnosis of coeliac disease: a narrative review. Transl Gastroenterol Hepatol. 2024;9:51.

Singh B, Jevnikar AM, Desjardins E. Artificial Intelligence, Big Data, and Regulation of Immunity: Challenges and Opportunities. Arch Immunol Ther Exp (Warsz). 2024;72(1).

Sipos JA. The History of Thyroid Ultrasound: Past, Present, and Future Directions. Endocr Pract. 2024.

Srinivasan M, Thangaraj SR, Ramasubramanian K, Thangaraj PP, Ramasubramanian KV. Exploring the Current Trends of Artificial Intelligence in Stem Cell Therapy: A Systematic Review. Cureus. 2021;13(12):e20083.

St Louis EK, Videnovic A. Sleep Neurology's Toolkit at the Crossroads: Challenges and Opportunities in Neurotherapeutics Lost and Found in Translation. Neurotherapeutics. 2021;18(1):1-5.

Stafford IS, Kellermann M, Mossotto E, Beattie RM, MacArthur BD, Ennis S. A systematic review of the applications of artificial intelligence and machine learning in autoimmune diseases. NPJ Digit Med. 2020;3:30.

Subramanian M, Wojtusciszyn A, Favre L, Boughorbel S, Shan J, Letaief KB, et al. Precision medicine in the era of artificial intelligence: implications in chronic disease management. J Transl Med. 2020;18(1):472.

Sugano K, Moss SF, Kuipers EJ. Gastric Intestinal Metaplasia: Real Culprit or Innocent Bystander as a Precancerous Condition for Gastric Cancer? Gastroenterology. 2023;165(6):1352-66.e1.

Suh A, Hampel G, Vinjamuri A, Ong J, Kamran SA, Waisberg E, et al. Oculomics analysis in multiple sclerosis: Current ophthalmic clinical and imaging biomarkers. Eye (Lond). 2024;38(14):2701-10.

Tacchino A, Podda J, Bergamaschi V, Pedullà L, Brichetto G. Cognitive rehabilitation in multiple sclerosis: Three digital ingredients to address current and future priorities. Front Hum Neurosci. 2023;17:1130231.

Tan Y, Sun X. Ocular images-based artificial intelligence on systemic diseases. Biomed Eng Online. 2023;22(1):49.

Taneishi K, Tsuchiya Y. Structure-based analyses of gut microbiome-related proteins by neural networks and molecular dynamics simulations. Curr Opin Struct Biol. 2022;73:102336.

Terranova N, Venkatakrishnan K. Machine Learning in Modeling Disease Trajectory and Treatment Outcomes: An Emerging Enabler for Model-Informed Precision Medicine. Clin Pharmacol Ther. 2024;115(4):720-6.

Teschke R. Hemochromatosis: Ferroptosis, ROS, Gut Microbiome, and Clinical Challenges with Alcohol as Confounding Variable. Int J Mol Sci. 2024;25(5).

Toro-Tobon D, Loor-Torres R, Duran M, Fan JW, Singh Ospina N, Wu Y, et al. Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions. Thyroid. 2023;33(8):903-17.

Tsao SY. Perspectives of traditional Chinese medicine to patch up immune checkpoint blockers. Explor Target Antitumor Ther. 2022;3(5):676-93.

Vivas AJ, Boumediene S, Tobón GJ. Predicting autoimmune diseases: A comprehensive review of classic biomarkers and advances in artificial intelligence. Autoimmun Rev. 2024;23(9):103611.

Wang S, Hou Y, Li X, Meng X, Zhang Y, Wang X. Practical Implementation of Artificial Intelligence-Based Deep Learning and Cloud Computing on the Application of Traditional Medicine and Western Medicine in the Diagnosis and Treatment of Rheumatoid Arthritis. Front Pharmacol. 2021;12:765435.

Wang Z, Wang G, Lu H, Li H, Tang M, Tong A. Development of therapeutic antibodies for the treatment of diseases. Mol Biomed. 2022;3(1):35.

Yamamiya A, Irisawa A, Hoshi K, Yamabe A, Izawa N, Nagashima K, et al. Recent Advances in Endosonography-Elastography: Literature Review. J Clin Med. 2021;10(16).

Yang Y, Liu Y, Chen Y, Luo D, Xu K, Zhang L. Artificial intelligence for predicting treatment responses in autoimmune rheumatic diseases: advancements, challenges, and future perspectives. Front Immunol. 2024;15:1477130.

Yao S, Zhang B, Fei X, Xiao M, Lu L, Liu D, et al. AI-Assisted Ultrasound for the Early Diagnosis of Antibody-Negative Autoimmune Thyroiditis. J Multidiscip Healthc. 2023;16:1801-10.

Yaung KN, Yeo JG, Kumar P, Wasser M, Chew M, Ravelli A, et al. Artificial intelligence and high-dimensional technologies in the theragnosis of systemic lupus erythematosus. Lancet Rheumatol. 2023;5(3):e151-e65.

Yi C, Niu G, Zhang Y, Rao J, Liu G, Yang W, et al. Advances in artificial intelligence in thyroid-associated ophthalmopathy. Front Endocrinol (Lausanne). 2024;15:1356055.

Zandee van Rilland ED, Yao L, Stevens KJ, Chung LS, Fiorentino DF, Boutin RD. Myositis and Its Mimics: Guideline Updates, MRI Characteristics, and New Horizons. AJR Am J Roentgenol. 2024;223(2):e2431359.

Zhang Y, Yu H, Dong R, Ji X, Li F. Application Prospect of Artificial Intelligence in Rehabilitation and Management of Myasthenia Gravis. Biomed Res Int. 2021;2021:5592472.

Zhou X, Cai F, Li S, Li G, Zhang C, Xie J, et al. Machine learning techniques for prediction in pregnancy complicated by autoimmune rheumatic diseases: Applications and challenges. Int Immunopharmacol. 2024;134:112238.

Afzal HMR, Luo S, Ramadan S, Lechner-Scott J. The emerging role of artificial intelligence in multiple sclerosis imaging. Mult Scler. 2022;28(6):849-58.

Al Jaf AIA, Peria S, Fabiano T, Ragnini-Wilson A. Remyelinating Drugs at a Crossroad: How to Improve Clinical Efficacy and Drug Screenings. Cells. 2024;13(16).

Alshamrani F. Role of artificial intelligence in multiple sclerosis management. Eur Rev Med Pharmacol Sci. 2024;28(10):3542-7.

Amin M, Martínez-Heras E, Ontaneda D, Prados Carrasco F. Artificial Intelligence and Multiple Sclerosis. Curr Neurol Neurosci Rep. 2024;24(8):233-43.

Arrambide G, Comabella M, Tur C. Big data and artificial intelligence applied to blood and CSF fluid biomarkers in multiple sclerosis. Front Immunol. 2024;15:1459502.

Aslam N, Khan IU, Bashamakh A, Alghool FA, Aboulnour M, Alsuwayan NM, et al. Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities. Sensors (Basel). 2022;22(20).

Barnett M, Barnett Y, Reddel S. MRI and laboratory monitoring of disease-modifying therapy efficacy and risks. Curr Opin Neurol. 2022;35(3):278-85.

Battistelli M, Izzo A, D'Ercole M, D'Alessandris QG, Montano N. The role of artificial intelligence in the management of trigeminal neuralgia. Front Surg. 2023;10:1310414.

Bonacchi R, Filippi M, Rocca MA. Role of artificial intelligence in MS clinical practice. Neuroimage Clin. 2022;35:103065.

Damer A, Chaudry E, Eftekhari D, Benseler SM, Safi F, Aviv RI, et al. Neuroimaging Scoring Tools to Differentiate Inflammatory Central Nervous System Small-Vessel Vasculitis: A Need for Artificial Intelligence/Machine Learning?-A Scoping Review. Tomography. 2023;9(5):1811-28.

Demuth S, Paris J, Faddeenkov I, De Sèze J, Gourraud PA. Clinical applications of deep learning in neuroinflammatory diseases: A scoping review. Rev Neurol (Paris). 2024.

Denissen S, Chén OY, De Mey J, De Vos M, Van Schependom J, Sima DM, et al. Towards Multimodal Machine Learning Prediction of Individual Cognitive Evolution in Multiple Sclerosis. J Pers Med. 2021;11(12).

Dhabalia R, Kashikar SV, Parihar PS, Mishra GV. Unveiling the Intricacies: A Comprehensive Review of Magnetic Resonance Imaging (MRI) Assessment of T2-Weighted Hyperintensities in the Neuroimaging Landscape. Cureus. 2024;16(2):e54808.

Duong MT, Rauschecker AM, Mohan S. Diverse Applications of Artificial Intelligence in Neuroradiology. Neuroimaging Clin N Am. 2020;30(4):505-16.

Etemadifar M, Norouzi M, Alaei SA, Karimi R, Salari M. The diagnostic performance of AI-based algorithms to discriminate between NMOSD and MS using MRI features: A systematic review and meta-analysis. Mult Scler Relat Disord. 2024;87:105682.

Fiani B, Pasko KBD, Sarhadi K, Covarrubias C. Current uses, emerging applications, and clinical integration of artificial intelligence in neuroradiology. Rev Neurosci. 2022;33(4):383-95.

Filippi M, Preziosa P, Arnold DL, Barkhof F, Harrison DM, Maggi P, et al. Present and future of the diagnostic work-up of multiple sclerosis: the imaging perspective. J Neurol. 2023;270(3):1286-99.

Foti G, Longo C. Deep learning and AI in reducing magnetic resonance imaging scanning time: advantages and pitfalls in clinical practice. Pol J Radiol. 2024;89:e443-e51.

Graves JS, Montalban X. Biosensors to monitor MS activity. Mult Scler. 2020;26(5):605-8.

Hartmann M, Fenton N, Dobson R. Current review and next steps for artificial intelligence in multiple sclerosis risk research. Comput Biol Med. 2021;132:104337.

Herrington CS, Poulsom R, Coates PJ. Recent Advances in Pathology: the 2020 Annual Review Issue of The Journal of Pathology. J Pathol. 2020;250(5):475-9.

Inojosa H, Voigt I, Wenk J, Ferber D, Wiest I, Antweiler D, et al. Integrating large language models in care, research, and education in multiple sclerosis management. Mult Scler. 2024;30(11-12):1392-401.

Jasperse B, Barkhof F. Machine Learning in Multiple Sclerosis. In: Colliot O, editor. Machine Learning for Brain Disorders. New York, NY: Humana

Copyright 2023, The Author(s). 2023. p. 899-919.

Kaka H, Zhang E, Khan N. Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New Frontier. Can Assoc Radiol J. 2021;72(1):35-44.

Keegan BM, Absinta M, Cohen-Adad J, Flanagan EP, Henry RG, Klawiter EC, et al. Spinal cord evaluation in multiple sclerosis: clinical and radiological associations, present and future. Brain Commun. 2024;6(6):fcae395.

Kim M, Jewells V. Multimodal Image Analysis for Assessing Multiple Sclerosis and Future Prospects Powered by Artificial Intelligence. Semin Ultrasound CT MR. 2020;41(3):309-18.

Kontopodis EE, Papadaki E, Trivizakis E, Maris TG, Simos P, Papadakis GZ, et al. Emerging deep learning techniques using magnetic resonance imaging data applied in multiple sclerosis and clinical isolated syndrome patients (Review). Exp Ther Med. 2021;22(4):1149.

Maggi P, Absinta M. Emerging MRI biomarkers for the diagnosis of multiple sclerosis. Mult Scler. 2024;30(14):1704-13.

Matthews PM, Block VJ, Leocani L. E-health and multiple sclerosis. Curr Opin Neurol. 2020;33(3):271-6.

Nabizadeh F, Masrouri S, Ramezannezhad E, Ghaderi A, Sharafi AM, Soraneh S, et al. Artificial intelligence in the diagnosis of multiple sclerosis: A systematic review. Mult Scler Relat Disord. 2022;59:103673.

Nabizadeh F, Ramezannezhad E, Kargar A, Sharafi AM, Ghaderi A. Diagnostic performance of artificial intelligence in multiple sclerosis: a systematic review and meta-analysis. Neurol Sci. 2023;44(2):499-517.

Naji Y, Mahdaoui M, Klevor R, Kissani N. Artificial Intelligence and Multiple Sclerosis: Up-to-Date Review. Cureus. 2023;15(9):e45412.

Oh J, Airas L, Harrison D, Järvinen E, Livingston T, Lanker S, et al. Neuroimaging to monitor worsening of multiple sclerosis: advances supported by the grant for multiple sclerosis innovation. Front Neurol. 2023;14:1319869.

Ostellino S, Benso A, Politano G. The integration of clinical data in the assessment of multiple sclerosis - A review. Comput Methods Programs Biomed. 2022;221:106900.

Petzold A, Albrecht P, Balcer L, Bekkers E, Brandt AU, Calabresi PA, et al. Artificial intelligence extension of the OSCAR-IB criteria. Ann Clin Transl Neurol. 2021;8(7):1528-42.

Pilehvari S, Morgan Y, Peng W. An analytical review on the use of artificial intelligence and machine learning in diagnosis, prediction, and risk factor analysis of multiple sclerosis. Mult Scler Relat Disord. 2024;89:105761.

Pirzada RH, Javaid N, Choi S. The Roles of the NLRP3 Inflammasome in Neurodegenerative and Metabolic Diseases and in Relevant Advanced Therapeutic Interventions. Genes (Basel). 2020;11(2).

Raghavendra U, Acharya UR, Adeli H. Artificial Intelligence Techniques for Automated Diagnosis of Neurological Disorders. Eur Neurol. 2019;82(1-3):41-64.

Rai A, Shah K, Dewangan HK. Review on the Artificial Intelligence-based Nanorobotics Targeted Drug Delivery System for Brain-specific Targeting. Curr Pharm Des. 2023;29(44):3519-31.

Rocca MA, Preziosa P, Barkhof F, Brownlee W, Calabrese M, De Stefano N, et al. Current and future role of MRI in the diagnosis and prognosis of multiple sclerosis. Lancet Reg Health Eur. 2024;44:100978.

Rocca MA, Schoonheim MM, Valsasina P, Geurts JJG, Filippi M. Task- and resting-state fMRI studies in multiple sclerosis: From regions to systems and time-varying analysis. Current status and future perspective. Neuroimage Clin. 2022;35:103076.

Sakai K, Yamada K. Machine learning studies on major brain diseases: 5-year trends of 2014-2018. Jpn J Radiol. 2019;37(1):34-72.

Shoeibi A, Khodatars M, Jafari M, Moridian P, Rezaei M, Alizadehsani R, et al. Applications of deep learning techniques for automated multiple sclerosis detection using magnetic resonance imaging: A review. Comput Biol Med. 2021;136:104697.

Singh AV, Chandrasekar V, Janapareddy P, Mathews DE, Laux P, Luch A, et al. Emerging Application of Nanorobotics and Artificial Intelligence To Cross the BBB: Advances in Design, Controlled Maneuvering, and Targeting of the Barriers. ACS Chem Neurosci. 2021;12(11):1835-53.

Vázquez-Marrufo M, Sarrias-Arrabal E, García-Torres M, Martín-Clemente R, Izquierdo G. A systematic review of the application of machine-learning algorithms in multiple sclerosis. Neurologia (Engl Ed). 2021.

Vázquez-Marrufo M, Sarrias-Arrabal E, García-Torres M, Martín-Clemente R, Izquierdo G. A systematic review of the application of machine-learning algorithms in multiple sclerosis. Neurologia (Engl Ed). 2023;38(8):577-90.

Voigt I, Inojosa H, Dillenseger A, Haase R, Akgün K, Ziemssen T. Digital Twins for Multiple Sclerosis. Front Immunol. 2021;12:669811.

Voigt I, Inojosa H, Wenk J, Akgün K, Ziemssen T. Building a monitoring matrix for the management of multiple sclerosis. Autoimmun Rev. 2023;22(8):103358.

Vrenken H, Jenkinson M, Pham DL, Guttmann CRG, Pareto D, Paardekooper M, et al. Opportunities for Understanding MS Mechanisms and Progression With MRI Using Large-Scale Data Sharing and Artificial Intelligence. Neurology. 2021;97(21):989-99.

Wenk J, Voigt I, Inojosa H, Schlieter H, Ziemssen T. Building digital patient pathways for the management and treatment of multiple sclerosis. Front Immunol. 2024;15:1356436.

Xie J, Tian S, Liu J, Cao R, Yue P, Cai X, et al. Dual role of the nasal microbiota in neurological diseases-An unignorable risk factor or a potential therapy carrier. Pharmacol Res. 2022;179:106189.

Zivadinov R, Tranquille A, Reeves JA, Dwyer MG, Bergsland N. Brain atrophy assessment in multiple sclerosis: technical- and subject-related barriers for translation to real-world application in individual subjects. Expert Rev Neurother. 2024;24(11):1081-96.

Al-Maini M, Maindarkar M, Kitas GD, Khanna NN, Misra DP, Johri AM, et al. Artificial intelligence-based preventive, personalized and precision medicine for cardiovascular disease/stroke risk assessment in rheumatoid arthritis patients: a narrative review. Rheumatol Int. 2023;43(11):1965-82.

Bellando-Randone S, Russo E, Venerito V, Matucci-Cerinic M, Iannone F, Tangaro S, et al. Exploring the Oral Microbiome in Rheumatic Diseases, State of Art and Future Prospective in Personalized Medicine with an AI Approach. J Pers Med. 2021;11(7).

Bird A, Oakden-Rayner L, McMaster C, Smith LA, Zeng M, Wechalekar MD, et al. Artificial intelligence and the future of radiographic scoring in rheumatoid arthritis: a viewpoint. Arthritis Res Ther. 2022;24(1):268.

Garner AJ, Saatchi R, Ward O, Hawley DP. Juvenile Idiopathic Arthritis: A Review of Novel Diagnostic and Monitoring Technologies. Healthcare (Basel). 2021;9(12).

Gatti M, Turrini E, Raschi E, Sestili P, Fimognari C. Janus Kinase Inhibitors and Coronavirus Disease (COVID)-19: Rationale, Clinical Evidence and Safety Issues. Pharmaceuticals (Basel). 2021;14(8).

Gutiérrez-Martínez J, Pineda C, Sandoval H, Bernal-González A. Computer-aided diagnosis in rheumatic diseases using ultrasound: an overview. Clin Rheumatol. 2020;39(4):993-1005.

Hügle T, Kalweit M. [Artificial intelligence-supported treatment in rheumatology : Principles, current situation and perspectives]. Z Rheumatol. 2021;80(10):914-27.

Jamthikar AD, Gupta D, Puvvula A, Johri AM, Khanna NN, Saba L, et al. Cardiovascular risk assessment in patients with rheumatoid arthritis using carotid ultrasound B-mode imaging. Rheumatol Int. 2020;40(12):1921-39.

Jurisica I. Explainable biology for improved therapies in precision medicine: AI is not enough. Best Pract Res Clin Rheumatol. 2024;38(4):102006.

Kedra J, Davergne T, Braithwaite B, Servy H, Gossec L. Machine learning approaches to improve disease management of patients with rheumatoid arthritis: review and future directions. Expert Rev Clin Immunol. 2021;17(12):1311-21.

Keller M, Guebeli A, Thieringer F, Honigmann P. Artificial intelligence in patient-specific hand surgery: a scoping review of literature. Int J Comput Assist Radiol Surg. 2023;18(8):1393-403.

Kharkar PS. Computational Approaches for the Design of (Mutant-)Selective Tyrosine Kinase Inhibitors: State-of-the-Art and Future Prospects. Curr Top Med Chem. 2020;20(17):1564-75.

Kingsmore KM, Lipsky PE. Recent advances in the use of machine learning and artificial intelligence to improve diagnosis, predict flares, and enrich clinical trials in lupus. Curr Opin Rheumatol. 2022;34(6):374-81.

McMaster C, Bird A, Liew DFL, Buchanan RR, Owen CE, Chapman WW, et al. Artificial Intelligence and Deep Learning for Rheumatologists. Arthritis Rheumatol. 2022;74(12):1893-905.

Naik A, Kale AA, Rajwade JM. Sensing the future: A review on emerging technologies for assessing and monitoring bone health. Biomater Adv. 2024;165:214008.

Ng S, Masarone S, Watson D, Barnes MR. The benefits and pitfalls of machine learning for biomarker discovery. Cell Tissue Res. 2023;394(1):17-31.

Nicoara AI, Sas LM, Bita CE, Dinescu SC, Vreju FA. Implementation of artificial intelligence models in magnetic resonance imaging with focus on diagnosis of rheumatoid arthritis and axial spondyloarthritis: narrative review. Front Med (Lausanne). 2023;10:1280266.

Patil Kose AH, Mangaonkar K. Application of Machine Learning in Rheumatoid Arthritis Diseases Research: Review and Future Directions. Comb Chem High Throughput Screen. 2023;26(13):2259-66.

Richardson PJ, Robinson BWS, Smith DP, Stebbing J. The AI-Assisted Identification and Clinical Efficacy of Baricitinib in the Treatment of COVID-19. Vaccines (Basel). 2022;10(6).

Seneviratne CJ, Balan P, Suriyanarayanan T, Lakshmanan M, Lee DY, Rho M, et al. Oral microbiome-systemic link studies: perspectives on current limitations and future artificial intelligence-based approaches. Crit Rev Microbiol. 2020;46(3):288-99.

Stoel B. Use of artificial intelligence in imaging in rheumatology - current status and future perspectives. RMD Open. 2020;6(1).

Stoel BC. Artificial intelligence in detecting early RA. Semin Arthritis Rheum. 2019;49(3s):S25-s8.

Zhang X, Su R, Wang H, Wu R, Fan Y, Bin Z, et al. The promise of Synovial Joint-on-a-Chip in rheumatoid arthritis. Front Immunol. 2024;15:1408501.

Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4(+) T cells, CD8(+) T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J. 2023;21:5662-75.

Baek SI, Ro S, Chung YH, Ju H, Kwon S, Park KA, et al. Novel index, neutrophil percentage (%) is a useful marker for disease activity in MOG antibody-associated disease. Mult Scler Relat Disord. 2023;76:104796.

Bergier H, Duron L, Sordet C, Kawka L, Schlencker A, Chasset F, et al. Digital health, big data and smart technologies for the care of patients with systemic autoimmune diseases: Where do we stand? Autoimmun Rev. 2021;20(8):102864.

Bhattacharya S, Hu Z, Butte AJ. Opportunities and Challenges in Democratizing Immunology Datasets. Front Immunol. 2021;12:647536.

Bush N, Khashab M, Akshintala VS. Current and Emerging Applications of Artificial Intelligence (AI) in the Management of Pancreatobiliary (PB) disorders. Curr Gastroenterol Rep. 2024;26(11):304-9.

Catalina MD, Owen KA, Labonte AC, Grammer AC, Lipsky PE. The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun. 2020;110:102359.

Chen Y, Liu H, Yu Q, Qu X, Sun T. Entry point of machine learning in axial spondyloarthritis. RMD Open. 2024;10(1).

Cohen IR, Efroni S. The Immune System Computes the State of the Body: Crowd Wisdom, Machine Learning, and Immune Cell Reference Repertoires Help Manage Inflammation. Front Immunol. 2019;10:10.

Connolly CM, Gupta L, Fujimoto M, Machado PM, Paik JJ. Idiopathic inflammatory myopathies: current insights and future frontiers. Lancet Rheumatol. 2024;6(2):e115-e27.

Conrad K, Shoenfeld Y, Fritzler MJ. Precision health: A pragmatic approach to understanding and addressing key factors in autoimmune diseases. Autoimmun Rev. 2020;19(5):102508.

Danieli MG, Brunetto S, Gammeri L, Palmeri D, Claudi I, Shoenfeld Y, et al. Machine learning application in autoimmune diseases: State of art and future prospectives. Autoimmun Rev. 2024;23(2):103496.

Diaz-Hurtado M, Martínez-Heras E, Solana E, Casas-Roma J, Llufriu S, Kanber B, et al. Recent advances in the longitudinal segmentation of multiple sclerosis lesions on magnetic resonance imaging: a review. Neuroradiology. 2022;64(11):2103-17.

Gatto M, Depascale R, Stefanski AL, Schrezenmeier E, Dörner T. Translational implications of newly characterized pathogenic pathways in systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 2023;37(4):101864.

Huang H, Vangay P, McKinlay CE, Knights D. Multi-omics analysis of inflammatory bowel disease. Immunol Lett. 2014;162(2 Pt A):62-8.

Jonsson AH. Synovial Tissue Insights into Heterogeneity of Rheumatoid Arthritis. Curr Rheumatol Rep. 2024;26(3):81-8.

Kayser C, Dutra LA, Dos Reis-Neto ET, Castro CHM, Fritzler MJ, Andrade LEC. The Role of Autoantibody Testing in Modern Personalized Medicine. Clin Rev Allergy Immunol. 2022;63(2):251-88.

Keret S, Rimar D, Lansiaux P, Feldman E, Lescoat A, Milman N, et al. Differentially expressed genes in systemic sclerosis: Towards predictive medicine with new molecular tools for clinicians. Autoimmun Rev. 2023;22(6):103314.

Khanna NN, Jamthikar AD, Gupta D, Piga M, Saba L, Carcassi C, et al. Rheumatoid Arthritis: Atherosclerosis Imaging and Cardiovascular Risk Assessment Using Machine and Deep Learning-Based Tissue Characterization. Curr Atheroscler Rep. 2019;21(2):7.

Kingsmore KM, Grammer AC, Lipsky PE. Drug repurposing to improve treatment of rheumatic autoimmune inflammatory diseases. Nat Rev Rheumatol. 2020;16(1):32-52.

Kingsmore KM, Puglisi CE, Grammer AC, Lipsky PE. An introduction to machine learning and analysis of its use in rheumatic diseases. Nat Rev Rheumatol. 2021;17(12):710-30.

Mahdy AKH, Lokes E, Schöpfel V, Kriukova V, Britanova OV, Steiert TA, et al. Bulk T cell repertoire sequencing (TCR-Seq) is a powerful technology for understanding inflammation-mediated diseases. J Autoimmun. 2024;149:103337.

Meng HY, Luo ZH, Hu B, Jin WL, Yan CK, Li ZB, et al. SNPs affecting the clinical outcomes of regularly used immunosuppressants. Pharmacogenomics. 2018;19(5):495-511.

Moritz CP, Paul S, Stoevesandt O, Tholance Y, Camdessanché JP, Antoine JC. Autoantigenomics: Holistic characterization of autoantigen repertoires for a better understanding of autoimmune diseases. Autoimmun Rev. 2020;19(2):102450.

Morris H, Kaplan PW, Kane N. Electroencephalography in encephalopathy and encephalitis. Pract Neurol. 2024;24(1):2-10.

Munguía-Realpozo P, Etchegaray-Morales I, Mendoza-Pinto C, Méndez-Martínez S, Osorio-Peña Á D, Ayón-Aguilar J, et al. Current state and completeness of reporting clinical prediction models using machine learning in systemic lupus erythematosus: A systematic review. Autoimmun Rev. 2023;22(5):103294.

Perez MAS, Cuendet MA, Röhrig UF, Michielin O, Zoete V. Structural Prediction of Peptide-MHC Binding Modes. Methods Mol Biol. 2022;2405:245-82.

Pratap Reddy Gajulapalli V. Development of Kinase-Centric Drugs: A Computational Perspective. ChemMedChem. 2023;18(19):e202200693.

Ralbovsky NM, Lednev IK. Towards development of a novel universal medical diagnostic method: Raman spectroscopy and machine learning. Chem Soc Rev. 2020;49(20):7428-53.

Ramasubramanian B, Reddy VS, Chellappan V, Ramakrishna S. Emerging Materials, Wearables, and Diagnostic Advancements in Therapeutic Treatment of Brain Diseases. Biosensors (Basel). 2022;12(12).

Sack U, Knoechner S, Warschkau H, Pigla U, Emmrich F, Kamprad M. Computer-assisted classification of HEp-2 immunofluorescence patterns in autoimmune diagnostics. Autoimmun Rev. 2003;2(5):298-304.

Sarkar S, Zheng X, Clair GC, Kwon YM, You Y, Swensen AC, et al. Exploring new frontiers in type 1 diabetes through advanced mass-spectrometry-based molecular measurements. Trends Mol Med. 2024.

Shi Y, Zhou M, Chang C, Jiang P, Wei K, Zhao J, et al. Advancing precision rheumatology: applications of machine learning for rheumatoid arthritis management. Front Immunol. 2024;15:1409555.

Xu J, Morten KJ. Raman micro-spectroscopy as a tool to study immunometabolism. Biochem Soc Trans. 2024;52(2):733-45.

Berbís M, Godino FP, Rodríguez-Comas J, Nava E, García-Figueiras R, Baleato-González S, et al. Radiomics in CT and MR imaging of the liver and pancreas: tools with potential for clinical application. Abdom Radiol (NY). 2024;49(1):322-40.

Di Cataldo S, Ficarra E. Mining textural knowledge in biological images: Applications, methods and trends. Comput Struct Biotechnol J. 2017;15:56-67.

Khatami M. Deceptology in cancer and vaccine sciences: Seeds of immune destruction-mini electric shocks in mitochondria: Neuroplasticity-electrobiology of response profiles and increased induced diseases in four generations - A hypothesis. Clin Transl Med. 2020;10(8):e215.

Rahman S, Wang L, Sun C, Zhou L. Deep learning based HEp-2 image classification: A comprehensive review. Med Image Anal. 2020;65:101764.

Kojuri J, Ostovan MA, Rezaee M. Short-and Mid-term Results of Atrial Septal Defect and Patent Foramen Ovale Occlusion with Starway Septal Occluder Device. 2011.

Mohammadi Z, Ravankhah M, Ahmadi M, Keshavarzian O, Azari I, Abdollahi M, et al. L-arginine impact on inflammatory and cardiac markers in patients undergoing coronary artery bypass graft: a systematic review and meta-analysis of randomized controlled trials. BMC Cardiovascular Disorders. 2024;24(1):641.

Valipoor R, Eslami M, Sattarzadeh-Badkoubeh R, Shahmohamadi E, Rezaei M, Mollazadeh R. Evaluation of Response to Cardiac Resynchronization Therapy in Patients with Non-Ischemic Cardiomyopathy Based on Echocardiographic Features Including Sphericity Index and Global Longitudinal Strain. International Cardiovascular Research Journal. 2021;15(2).

Danesh S, Rezaei M, Ardekani AM, Talebi A. Evaluate The Clinical Outcomes Of Postoperative Atrial Fibrillation In Patients With Cardiac Surgery: Systematic Review And Meta-Analysis. Turkish Online Journal of Qualitative Inquiry. 2021;12(8).

Alavi M, Abdinejad M, Rezaei M, Moaref A. Evaluation of vascular graft infection following Bentall surgery using 18F‐FDG PET/CT scan: A pediatric case report. Clinical Case Reports. 2024;12(1):e8396.

Naziri Z, Rahimlou M, Rezaei M, Tabrizi R, Nasr M, Motazedian M, et al. High dietary antioxidant intake linked to lower risk of myocardial infarction: a nested case-control study. BMC Cardiovascular Disorders. 2024;24(1):485.

Ghaedian T, Abdinejad M, Aieneh P, Ebrahimi S, Rezaei M. Characterization of left ventricular diastolic parameters of gated-single-photon emission computed tomography myocardial perfusion imaging in patients with diabetes and normal myocardial perfusion and systolic function. Nuclear medicine communications. 2023;44(9):788-94.

Sabet HR, Ahmadi M, Akrami M, Motamed M, Keshavarzian O, Abdollahi M, et al. Effects of flaxseed supplementation on weight loss, lipid profiles, glucose, and high‐sensitivity C‐reactive protein in patients with coronary artery disease: A systematic review and meta‐analysis of randomized controlled trials. Clinical Cardiology. 2024;47(1):e24211.

Farrokhi M, Rezaei M, Azarshab M. Meta-analysis Research Hotspots and Global Mapping of Publications in the Role of Artificial Intelligence in Cancer: A Bibliometric Study. Journal of Reviews in Medical Sciences. 2024;4(1):e1.

Rezaei M, Saei S, Khouzani SJ, Rostami ME, Rahmannia M, Manzelat AMR, et al. Emerging Technologies in Medicine: Artificial Intelligence, Robotics, and Medical Automation. Kindle. 2023;3(1):1-184.

Rezaei T, Rezaei M, Karimifard S, Mahmoudi Beram F, Dakkali MS, Heydari M, et al. Folic acid-decorated ph-responsive nanoniosomes with enhanced endocytosis for breast cancer therapy: in vitro studies. Frontiers in pharmacology. 2022;13:851242.

Rezaei T, Khouzani PJ, Khouzani SJ, Fard AM, Rashidi S, Ghazalgoo A, et al. Integrating Artificial Intelligence into Telemedicine: Revolutionizing Healthcare Delivery. Kindle. 2023;3(1):1-161.

Rahmani E, Rezaei M, Tavakoli R, Ghadirzadeh E, Sarnaghy FJ, Khorram R, et al. Role of Regenerative Medicine in the Treatment of Diseases. Kindle. 2023;3(1):1-184.

Taheri F, Rahmani E, Fard SS, Rezaei M, Ayati A, Farhoudian A, et al. Aging Process and Related Diseases. Kindle. 2023;3(1):1-117.

Abadi SAH, Atbaei R, Forouhi M, Falaverjani HG, Moazamiyanfar R, Rezaei M, et al. Preventive and Therapeutic Approaches in Medical Departments During the COVID-19 Pandemic. Kindle. 2022;2(1):1-216.

Zahmatkesh N, Babaei SS, Manesh SH, Abbaspour M, Ghadirzadeh E, Salimian N, et al. Artificial Intelligence for Prediction of Metastasis Risk and Survival. Kindle. 2024;4(1):1-205.

Taheri F, Farrokhi M, Rajabloo Y, Razavi N, Shirdel E, Hooshiar MH, et al. Complementary and alternative medicine (CAM). Kindle. 2024;4(1):1-193.

Nemati P, Khalaji A, Rajabloo Y, Kazemi MH, Nouri S, Mohebbi S, et al. AI and Deep Learning in Understanding the Etiology and Pathogenesis of Cancers. Kindle. 2024;4(1):1-173.

Khorsand M-S, Heidari S, Darbani R, Tosi YEK, Pourasad MH, Rajabloo Y, et al. AI Chatbots and Telemedicine in Cancer Care: Supporting Patients and Enhancing Communications. Kindle. 2024;4(1):1-205.

Karimian S, Taheri F, Farrokhi M, Farrokhi M, Bayat Z, Zadeh SAM, et al. Digital Health and Wearable Technologies. Kindle. 2024;4(1):1-240.

Farrokhi M, Taheri F, Moeini A, Farrokhi M, Khouzani PJ, Ghadirzadeh E, et al. Artificial Intelligence for Drug Development, Personalized Prescriptions, and Adverse Event Prediction. Kindle. 2024;4(1):1-180.

Farrokhi M, Taheri F, Moeini A, Farrokhi M, Alireza MZS, Farahmandsadr M, et al. Artificial Intelligence for Remote Patient Monitoring: Advancements, Applications, and Challenges. Kindle. 2024;4(1):1-261.

Farrokhi M, Taheri F, Farrokhi M, Tosi YEK, Ghadirzadeh E, Bagheri M, et al. Nanomedicine: Technologies and Applications. Kindle. 2024;4(1):1-196.

Farrokhi M, Taheri F, Farrokhi M, Moeini A, Tooyserkani SH, Shahali A, et al. Anti-Aging Strategies to Prevent Diseases: Promoting Longevity and Optimal Health. Kindle. 2024;4(1):1-194.

Farrokhi M, Taheri F, Farrokhi M, Heydari Z, Darbani R, Salbi M, et al. Advancements and Innovations in Cancer Management: A Comprehensive Perspective. Kindle. 2024;4(1):1-161.

Farrokhi M, Taheri F, Farrokhi M, Emtiazi N, Talebi M, Akbari A, et al. Human and AI: Collaborative Medicine in the Age of Technology. Kindle. 2024;4(1):1-160.

Farrokhi M, Taheri F, Bayat Z, Damiri M, Farrokhi M, Ghadirzadeh E, et al. Role of Lifestyle Medicine in the Prevention and Treatment of Diseases. Kindle. 2024;4(1):1-219.

Farrokhi M, Taheri F, Adibnia E, Mehrtabar S, Rassaf Z, Tooyserkani SH, et al. The AI Diagnostician: Improving Medical Diagnosis with Artificial Intelligence. Kindle. 2024;4(1):1-219.

Farrokhi M, Khouzani SJ, Farrokhi M, Jalayeri H, Faranoush P, Babaei M, et al. Artificial Intelligence and Deep Learning for Screening and Risk Assessment of Cancers. Kindle. 2024;4(1):1-140.

Amiri H, Ghaneiyan M, Farjami P, Mehran H, Mohammadzadeh S, Ghaderi S, et al. AI-Enhanced Virtual Clinics and Telemedicine for Cancer Treatment. Kindle. 2024;4(1):1-207.

Zhao XC, Ju B, Xiu NN, Sun XY, Meng FJ. When inflammatory stressors dramatically change, disease phenotypes may transform between autoimmune hematopoietic failure and myeloid neoplasms. Front Immunol. 2024;15:1339971.

Szewczuk O, Szewczuk W, Walędziak M, Różańska-Walędziak A. Spontaneous regression of fetal pleural effusion in pregnancy complicated with Herpes simplex infection: Clinical presentation and literature review. Eur J Obstet Gynecol Reprod Biol. 2024;299:193-8.

Oeverhaus M, Neumann I, Chen Y, Eckstein A. [Graves' orbitopathy as the cause of diplopia in old age-Differences between young and old]. Ophthalmologie. 2024;121(7):548-53.

Khan GJ, Imtiaz A, Wang W, Duan H, Cao H, Zhai K, et al. Thymus as Incontrovertible Target of Future Immune Modulatory Therapeutics. Endocr Metab Immune Disord Drug Targets. 2024;24(14):1587-610.

Bahreiny SS, Ahangarpour A, Amraei M, Mansouri Z, Pirsadeghi A, Kazemzadeh R, et al. Autoimmune thyroid disorders and polycystic ovary syndrome: Tracing links through systematic review and meta-analysis. J Reprod Immunol. 2024;163:104215.

Worley G, Byeon SK, Smith PB, Hart SJ, Young SP, Pandey A, et al. An exploratory study of plasma ceramides in comorbidities in Down syndrome. Am J Med Genet A. 2023;191(9):2300-11.

Tharmaraja T, Ho JSY, Neligan A, Rajakulendran S. The etiology and mortality of new-onset refractory status epilepticus (NORSE) in adults: A systematic review and meta-analysis. Epilepsia. 2023;64(5):1113-24.

Nikola N, Natasa D, Milica K. A rare case of miliary tuberculosis in a patient with NSCLC receiving PD1 inhibitor therapy, mimicking autoimmune pneumonitis. J Cancer Res Ther. 2023;19(Suppl 2):S909-s11.

Mangodt TC, Vanden Driessche K, Norga KK, Moes N, De Bruyne M, Haerynck F, et al. Central nervous system manifestations of LRBA deficiency: case report of two siblings and literature review. BMC Pediatr. 2023;23(1):353.

Lin Z, Zhao Y, Li F, Li J, Huang X. Efficacy and safety of biological agents for pemphigoid: a systematic review and meta-analysis. Int J Dermatol. 2023;62(8):1000-8.

Larvin H, Kang J, Aggarwal VR, Pavitt S, Wu J. Periodontitis and risk of immune-mediated systemic conditions: A systematic review and meta-analysis. Community Dent Oral Epidemiol. 2023;51(5):705-17.

Hajibandeh S, Jurdon R, Heaton E, Hajibandeh S, O'Reilly D. The risk of recurrent pancreatitis after first episode of acute pancreatitis in relation to etiology and severity of disease: A systematic review, meta-analysis and meta-regression analysis. J Gastroenterol Hepatol. 2023;38(10):1718-33.

Fonseca E, Cabrera-Maqueda JM, Ruiz-García R, Naranjo L, Diaz-Pedroche C, Velasco R, et al. Neurological adverse events related to immune-checkpoint inhibitors in Spain: a retrospective cohort study. Lancet Neurol. 2023;22(12):1150-9.

De Porras-Carrique T, Ramos-García P, Aguilar-Diosdado M, Warnakulasuriya S, González-Moles M. Autoimmune disorders in oral lichen planus: A systematic review and meta-analysis. Oral Dis. 2023;29(4):1382-94.

Aviv-Shimoni S, Uri I, Milloh-Raz H, Percik R. Isolated autoimmune adrenocorticotropic hormone deficiency: A positive predictor of survival among cancer patients treated with checkpoint inhibitors. Autoimmun Rev. 2023;22(9):103387.

Restivo V, Candiloro S, Daidone M, Norrito R, Cataldi M, Minutolo G, et al. Systematic review and meta-analysis of cardiovascular risk in rheumatological disease: Symptomatic and non-symptomatic events in rheumatoid arthritis and systemic lupus erythematosus. Autoimmun Rev. 2022;21(1):102925.

He J, Williamson L, Cai K, Wong P, Sturgess A, Taper J, et al. Epstein-Barr virus-related lymphoma in rheumatoid arthritis: implications for long-term usage of immunosuppressive drugs and review of the literature. Intern Med J. 2022;52(10):1717-23.

Fukuyama M, Ito T, Ohyama M. Alopecia areata: Current understanding of the pathophysiology and update on therapeutic approaches, featuring the Japanese Dermatological Association guidelines. J Dermatol. 2022;49(1):19-36.

Ellinghaus D. How genetic risk contributes to autoimmune liver disease. Semin Immunopathol. 2022;44(4):397-410.

Wu CY, Yang HY, Huang JL, Lai JH. Signals and Mechanisms Regulating Monocyte and Macrophage Activation in the Pathogenesis of Juvenile Idiopathic Arthritis. Int J Mol Sci. 2021;22(15).

Wang D, Wei X, Kalvakolanu DV, Guo B, Zhang L. Perspectives on Oncolytic Salmonella in Cancer Immunotherapy-A Promising Strategy. Front Immunol. 2021;12:615930.

Sancho Saldaña A, Mahdi-Rogers M, Hadden RD. Sensory neuronopathies: A case series and literature review. J Peripher Nerv Syst. 2021;26(1):66-74.

Nedelcu R, Dobre A, Brinzea A, Hulea I, Andrei R, Zurac S, et al. Current Challenges in Deciphering Sutton Nevi-Literature Review and Personal Experience. J Pers Med. 2021;11(9).

Moradi LA, Clark CA, Schneider CS, Deshane AS, Dobelbower MC. Durable Metastatic Melanoma Remission Following Pembrolizumab and Radiotherapy: A Case Report of Prophylactic Immunosuppression in a Patient with Myasthenia Gravis and Immune-Mediated Colitis. Front Immunol. 2021;12:788499.

Li Q, Fu N, Han Y, Qin J. Pediatric Autoimmune Encephalitis and Its Relationship With Infection. Pediatr Neurol. 2021;120:27-32.

Sun Z, Liu B, Luo ZJ. The Immune Privilege of the Intervertebral Disc: Implications for Intervertebral Disc Degeneration Treatment. Int J Med Sci. 2020;17(5):685-92.

Adam H, Alqassas M, Saadah OI, Mosli M. Extraintestinal Manifestations of Inflammatory Bowel Disease in Middle Eastern Patients. J Epidemiol Glob Health. 2020;10(4):298-303.

Żółkiewicz J, Stochmal A, Rudnicka L. The role of adipokines in systemic sclerosis: a missing link? Arch Dermatol Res. 2019;311(4):251-63.

Zitouni NB, Arnault JP, Dadban A, Attencourt C, Lok CC, Chaby G. Subacute cutaneous lupus erythematosus induced by nivolumab: two case reports and a literature review. Melanoma Res. 2019;29(2):212-5.

Tokuhira M, Tamaru JI, Kizaki M. Clinical management for other iatrogenic immunodeficiency-associated lymphoproliferative disorders. J Clin Exp Hematop. 2019;59(2):72-92.

Ruffo E, Wu RC, Bruno TC, Workman CJ, Vignali DAA. Lymphocyte-activation gene 3 (LAG3): The next immune checkpoint receptor. Semin Immunol. 2019;42:101305.

Motofei IG. Melanoma and autoimmunity: spontaneous regressions as a possible model for new therapeutic approaches. Melanoma Res. 2019;29(3):231-6.

Mehra C, Sil A, Hedderly T, Kyriakopoulos M, Lim M, Turnbull J, et al. Childhood disintegrative disorder and autism spectrum disorder: a systematic review. Dev Med Child Neurol. 2019;61(5):523-34.

Hu BQ, Yang Y, Zhao CJ, Liu DF, Kuang F, Zhang LJ, et al. Accuracy of neutrophil CD64 expression in diagnosing infection in patients with autoimmune diseases: a meta-analysis. Clin Rheumatol. 2019;38(5):1319-28.

Dzangué-Tchoupou G, Mariampillai K, Bolko L, Amelin D, Mauhin W, Corneau A, et al. CD8+(T-bet+) cells as a predominant biomarker for inclusion body myositis. Autoimmun Rev. 2019;18(4):325-33.

Alissafi T, Hatzioannou A, Legaki AI, Varveri A, Verginis P. Balancing cancer immunotherapy and immune-related adverse events: The emerging role of regulatory T cells. J Autoimmun. 2019;104:102310.

Agbim U, Asrani SK. Non-invasive assessment of liver fibrosis and prognosis: an update on serum and elastography markers. Expert Rev Gastroenterol Hepatol. 2019;13(4):361-74.

Sharabi A, Tsokos MG, Ding Y, Malek TR, Klatzmann D, Tsokos GC. Regulatory T cells in the treatment of disease. Nat Rev Drug Discov. 2018;17(11):823-44.

Ruggieri VL, Arberas CL. [Autistic regression: clinical and aetiological aspects]. Rev Neurol. 2018;66(S01):S17-s23.

Qu X, Tang Y, Hua S. Immunological Approaches Towards Cancer and Inflammation: A Cross Talk. Front Immunol. 2018;9:563.

Kumar P, Bhattacharya P, Prabhakar BS. A comprehensive review on the role of co-signaling receptors and Treg homeostasis in autoimmunity and tumor immunity. J Autoimmun. 2018;95:77-99.

Knochelmann HM, Dwyer CJ, Bailey SR, Amaya SM, Elston DM, Mazza-McCrann JM, et al. When worlds collide: Th17 and Treg cells in cancer and autoimmunity. Cell Mol Immunol. 2018;15(5):458-69.

Deng J, Fang F, Wang XH, Ge M, He LJ, Zhang N. [Small vessel-childhood primary angiitis of the central nervous system: a case report and literature review]. Zhonghua Er Ke Za Zhi. 2018;56(2):142-7.

Boleto G, Allanore Y, Avouac J. Targeting Costimulatory Pathways in Systemic Sclerosis. Front Immunol. 2018;9:2998.

Wang P, Lv TT, Guan SY, Li HM, Leng RX, Zou YF, et al. Increased plasma/serum levels of prolactin in systemic lupus erythematosus: a systematic review and meta-analysis. Postgrad Med. 2017;129(1):126-32.

Vergura M, Prencipe M, Del Giudice AM, Grifa R, Miscio F, Pennelli AM, et al. [PRES (Posterior Reversible Encephalopathy Syndrome): potential complication of hypertensive crisis. Case report and literature review]. G Ital Nefrol. 2017;34(2):100-9.

Tay SH, Fairhurst AM, Mak A. Clinical utility of circulating anti-N-methyl-(d)-aspartate receptor subunits NR2A/B antibody for the diagnosis of neuropsychiatric syndromes in systemic lupus erythematosus and Sjögren's syndrome: An updated meta-analysis. Autoimmun Rev. 2017;16(2):114-22.

Takai S, Tagawa A, Ogawa T, Kato H, Saito N, Okada S. [Thymoma with immunodeficiency/Good syndrome associated with myasthenia gravis]. Rinsho Shinkeigaku. 2017;57(5):208-13.

Karri SK, Sheela A. Potential route of Th17/T(reg) cell dynamics in targeting type 1 diabetes and rheumatoid arthritis: an autoimmune disorder perspective. Br J Biomed Sci. 2017;74(1):8-15.

Cossu G, Carta MG, Contu F, Mela Q, Demelia L, Elli L, et al. Coeliac disease and psychiatric comorbidity: epidemiology, pathophysiological mechanisms, quality-of-life, and gluten-free diet effects. Int Rev Psychiatry. 2017;29(5):489-503.

Bazer FW, Thatcher WW. Chronicling the discovery of interferon tau. Reproduction. 2017;154(5):F11-f20.

Watad A, Mahroum N, Whitby A, Gertel S, Comaneshter D, Cohen AD, et al. Hypothyroidism among SLE patients: Case-control study. Autoimmun Rev. 2016;15(5):484-6.

Vaglio A, Maritati F. Idiopathic Retroperitoneal Fibrosis. J Am Soc Nephrol. 2016;27(7):1880-9.

Sobolewska-Włodarczyk A, Włodarczyk M, Fichna J, Wiśniewska-Jarosińska M. Alopecia areata in patients with inflammatory bowel disease: an overview. Folia Med Cracov. 2016;56(1):5-12.

Houri Levi E, Watad A, Whitby A, Tiosano S, Comaneshter D, Cohen AD, et al. Coexistence of ischemic heart disease and rheumatoid arthritis patients-A case control study. Autoimmun Rev. 2016;15(4):393-6.

Fallahi P, Ferrari SM, Ruffilli I, Elia G, Giuggioli D, Colaci M, et al. Incidence of thyroid disorders in mixed cryoglobulinemia: Results from a longitudinal follow-up. Autoimmun Rev. 2016;15(7):747-51.

Du MQ. MALT lymphoma: A paradigm of NF-κB dysregulation. Semin Cancer Biol. 2016;39:49-60.

Busnelli A, Paffoni A, Fedele L, Somigliana E. The impact of thyroid autoimmunity on IVF/ICSI outcome: a systematic review and meta-analysis. Hum Reprod Update. 2016;22(6):775-90.

Zhang D, Tu E, Kasagi S, Zanvit P, Chen Q, Chen W. Manipulating regulatory T cells: a promising strategy to treat autoimmunity. Immunotherapy. 2015;7(11):1201-11.

Wu S, Ding Y, Wu F, Li R, Xie G, Hou J, et al. Family history of autoimmune diseases is associated with an increased risk of autism in children: A systematic review and meta-analysis. Neurosci Biobehav Rev. 2015;55:322-32.

Watts RA, MacGregor AJ, Mackie SL. HLA allele variation as a potential explanation for the geographical distribution of granulomatosis with polyangiitis. Rheumatology (Oxford). 2015;54(2):359-62.

Wang SS, Vajdic CM, Linet MS, Slager SL, Voutsinas J, Nieters A, et al. Associations of non-Hodgkin Lymphoma (NHL) risk with autoimmune conditions according to putative NHL loci. Am J Epidemiol. 2015;181(6):406-21.

Gomes V, Mesquita A, Capela C. Autoimmune diseases and pregnancy: analysis of a series of cases. BMC Res Notes. 2015;8:216.

Floreani A, Franceschet I, Cazzagon N, Spinazzè A, Buja A, Furlan P, et al. Extrahepatic autoimmune conditions associated with primary biliary cirrhosis. Clin Rev Allergy Immunol. 2015;48(2-3):192-7.

Belsante MJ, Selph JP, Peterson AC. The contemporary management of urethral strictures in men resulting from lichen sclerosus. Transl Androl Urol. 2015;4(1):22-8.

Beça S, Rodríguez-Pintó I, Alba MA, Cervera R, Espinosa G. Development and validation of a risk calculator to differentiate flares from infections in systemic lupus erythematosus patients with fever. Autoimmun Rev. 2015;14(7):586-93.

Adama D, Moussa B, Emmanuel M, Dennis U. Breast cancer revealed by a paraneoplastic cerebellar syndrome: about one case and literature review. Pan Afr Med J. 2015;22:25.

Todic J, Schweizer V, Leuchter I. [Bamboo nodes of vocal folds: case report and review of literature]. Rev Med Suisse. 2014;10(444):1811-2, 4-5.

Thaxton JE, Li Z. To affinity and beyond: harnessing the T cell receptor for cancer immunotherapy. Hum Vaccin Immunother. 2014;10(11):3313-21.

Pedoeem A, Azoulay-Alfaguter I, Strazza M, Silverman GJ, Mor A. Programmed death-1 pathway in cancer and autoimmunity. Clin Immunol. 2014;153(1):145-52.

Oikonomopoulou K, Brinc D, Hadjisavvas A, Christofi G, Kyriacou K, Diamandis EP. The bifacial role of helminths in cancer: involvement of immune and non-immune mechanisms. Crit Rev Clin Lab Sci. 2014;51(3):138-48.

Erkes DA, Selvan SR. Hapten-induced contact hypersensitivity, autoimmune reactions, and tumor regression: plausibility of mediating antitumor immunity. J Immunol Res. 2014;2014:175265.

Elli L, Discepolo V, Bardella MT, Guandalini S. Does gluten intake influence the development of celiac disease-associated complications? J Clin Gastroenterol. 2014;48(1):13-20.

Ceeraz S, Nowak EC, Burns CM, Noelle RJ. Immune checkpoint receptors in regulating immune reactivity in rheumatic disease. Arthritis Res Ther. 2014;16(5):469.

Oikonomopoulou K, Brinc D, Kyriacou K, Diamandis EP. Infection and cancer: revaluation of the hygiene hypothesis. Clin Cancer Res. 2013;19(11):2834-41.

Lamireau T, Clouzeau H. [Epidemiology of celiac disease]. Pathol Biol (Paris). 2013;61(2):e1-4.

Denton CP, Ong VH. Targeted therapies for systemic sclerosis. Nat Rev Rheumatol. 2013;9(8):451-64.

Chen Z, Fei M, Fu D, Zhang L, Ma Y, Wang Y, et al. Association between cytotoxic T lymphocyte antigen-4 polymorphism and type 1 diabetes: a meta-analysis. Gene. 2013;516(2):263-70.

Zorzetto V, Maddalo G, Basso D, Farinati F. Immunotherapy for gastric premalignant lesions and cancer. Immunotherapy. 2012;4(6):587-99.

Nunez-Enamorado N, Camacho-Salas A, Belda-Hofheinz S, Cordero-Castro C, Simon-De Las Heras R, Saiz-Diaz R, et al. [Fast and spectacular clinical response to plasmapheresis in a paediatric case of anti-NMDA encephalitis]. Rev Neurol. 2012;54(7):420-4.

Kanterman J, Sade-Feldman M, Baniyash M. New insights into chronic inflammation-induced immunosuppression. Semin Cancer Biol. 2012;22(4):307-18.

Herreros-Villanueva M, Hijona E, Cosme A, Bujanda L. Spontaneous regression of pancreatic cancer: real or a misdiagnosis? World J Gastroenterol. 2012;18(23):2902-8.

Zhu M, Fu YX. The role of core TNF/LIGHT family members in lymph node homeostasis and remodeling. Immunol Rev. 2011;244(1):75-84.

Spanel-Borowski K. Footmarks of innate immunity in the ovary and cytokeratin-positive cells as potential dendritic cells. Adv Anat Embryol Cell Biol. 2011;209:vii-99.

Moudgil KD, Choubey D. Cytokines in autoimmunity: role in induction, regulation, and treatment. J Interferon Cytokine Res. 2011;31(10):695-703.

Färkkilä M. [IgG4 associated autoimmune cholangitis]. Duodecim. 2011;127(1):49-55.

De Nunzio C, Kramer G, Marberger M, Montironi R, Nelson W, Schröder F, et al. The controversial relationship between benign prostatic hyperplasia and prostate cancer: the role of inflammation. Eur Urol. 2011;60(1):106-17.

Cassaday RD, Malik JT, Chang JE. Regression of Hodgkin lymphoma after discontinuation of a tumor necrosis factor inhibitor for Crohn's disease: a case report and review of the literature. Clin Lymphoma Myeloma Leuk. 2011;11(3):289-92.

Tyrrell PN, Beyene J, Feldman BM, McCrindle BW, Silverman ED, Bradley TJ. Rheumatic disease and carotid intima-media thickness: a systematic review and meta-analysis. Arterioscler Thromb Vasc Biol. 2010;30(5):1014-26.

Nagy GR, Neducsin BP, Rigó J, Jr. [Microchimerism, as an inheritance from pregnancy]. Orv Hetil. 2010;151(49):2019-24.

Mastrangelo M, Mariani R, Menichella A. Eponym : Rasmussen syndrome. Eur J Pediatr. 2010;169(8):919-24.

Gozu HI, Lublinghoff J, Bircan R, Paschke R. Genetics and phenomics of inherited and sporadic non-autoimmune hyperthyroidism. Mol Cell Endocrinol. 2010;322(1-2):125-34.

Gheith O, Al-Otaibi T, Tawab KA, Said T, Balaha MA, Halim MA, et al. Erythema nodosum in renal transplant recipients: multiple cases and review of literature. Transpl Infect Dis. 2010;12(2):164-8.

Ezra N, Goltche NB, Hakimian S, Afari A. CTLA4-induced splenomegaly and a review of the literature pertaining to autoimmune complications of therapy. J Drugs Dermatol. 2010;9(11):1432-6.

do Prado AD, Piovesan DM, Staub HL, Horta BL. Association of anticardiolipin antibodies with preeclampsia: a systematic review and meta-analysis. Obstet Gynecol. 2010;116(6):1433-43.

AI and Deep Learning in Understanding the Etiology and Pathogenesis of Autoimmune Diseases

Downloads

Published

2024-12-06

How to Cite

Rigi, A., Harati, K., Abbaspour, M., Fattahpour, S. F., Hosseini, P., Moghadam Fard, A., Hobbi, M., Babapour, G., Babapour, N., Nikben, N., Doroudgar, P., Mehrvar, R., Hosseinmirzaei, S., Razavi, N., Nikseresht, H., Niakosari, V., Morovatshoar, R., Mazaheri, P., Mirabedini, S. M. S., Taghipour, L., Fallahian, A., Rahmati, H., Babakhani, R., Heidari, M., Alipour, M., Taherlou, S., Taherlou, A., Ghazanfarpour, M., Shahriari, S., Pilva, H., Jan, D., Baghizadeh, S., Sabzehie, H., Khansari Nejad, N., & Rahmani, P. (2024). AI and Deep Learning in Understanding the Etiology and Pathogenesis of Autoimmune Diseases. Kindle, 4(1), 1–182. Retrieved from https://preferpub.org/index.php/kindle/article/view/Book46

Issue

Section

Academic Text Books

Categories