Artificial Intelligence in Genomic Medicine: Improving Diagnostic Accuracy and Treatment Outcomes
Keywords:
Artificial Intelligence, Genomic, Medicine, Diagnostic Accuracy, TreatmentAbstract
Artificial intelligence (AI) is revolutionizing genomic medicine by enhancing the speed, accuracy, and efficiency of genetic data analysis. With the explosion of genomic information generated through technologies like next-generation sequencing, traditional analytical methods often fall short in identifying complex patterns within vast datasets. AI algorithms, particularly machine learning and deep learning models, can process and interpret these massive datasets with remarkable precision. This capability allows for the discovery of novel genetic markers, risk factors, and disease mechanisms that were previously undetectable through conventional methods. One of the most significant contributions of AI in genomic medicine is the improvement in diagnostic accuracy. AI-driven tools can integrate genomic data with clinical, imaging, and biochemical information to predict disease risk, identify early-stage pathologies, and provide more accurate diagnoses. In oncology, for example, AI models can detect mutations linked to various cancers, guiding personalized treatment plans that target specific genetic alterations. Moreover, AI enhances treatment outcomes by facilitating precision medicine approaches. By analyzing individual genetic profiles, AI helps clinicians select the most effective therapies, predict patient responses to specific drugs, and monitor disease progression in real time. This personalized approach minimizes trial-and-error treatments and reduces adverse drug reactions, leading to better patient outcomes. As AI continues to evolve, its integration with genomic medicine holds the potential to transform healthcare, making it more predictive, preventive, personalized, and participatory. Future innovations will likely further bridge the gap between complex genetic insights and practical clinical applications.
References
Abbod MF, Linkens DA, Catto JW, Hamdy FC. Comparative study of intelligent models for the prediction of bladder cancer progression. Oncol Rep. 2006;15 Spec no.:1019-22.
Abusara OH, Agha A, Bardaweel SK. Advancements and innovations in liquid biopsy through microfluidic technology for cancer diagnosis. Analyst. 2025;150(9):1711-25.
Ahmed F, Khan AA, Ansari HR, Haque A. A Systems Biology and LASSO-Based Approach to Decipher the Transcriptome-Interactome Signature for Predicting Non-Small Cell Lung Cancer. Biology (Basel). 2022;11(12).
Aida S, Okugawa J, Fujisaka S, Kasai T, Kameda H, Sugiyama T. Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks. Biomolecules. 2020;10(6).
Alshareef AM, Alsini R, Alsieni M, Alrowais F, Marzouk R, Abunadi I, et al. Optimal Deep Learning Enabled Prostate Cancer Detection Using Microarray Gene Expression. J Healthc Eng. 2022;2022:7364704.
Alvarez-Torres MDM, Fu X, Rabadan R. Illuminating the Noncoding Genome in Cancer using Artificial Intelligence. Cancer Res. 2025.
Amanzholova A, Coşkun A. Enhancing cancer stage prediction through hybrid deep neural networks: a comparative study. Front Big Data. 2024;7:1359703.
Amjad E, Asnaashari S, Sokouti B, Dastmalchi S. Impact of Gene Biomarker Discovery Tools Based on Protein-Protein Interaction and Machine Learning on Performance of Artificial Intelligence Models in Predicting Clinical Stages of Breast Cancer. Interdiscip Sci. 2020;12(4):476-86.
Anđelić N, Baressi Šegota S. Development of Symbolic Expressions Ensemble for Breast Cancer Type Classification Using Genetic Programming Symbolic Classifier and Decision Tree Classifier. Cancers (Basel). 2023;15(13).
Arasu VA, Habel LA, Achacoso NS, Buist DSM, Cord JB, Esserman LJ, et al. Comparison of Mammography AI Algorithms with a Clinical Risk Model for 5-year Breast Cancer Risk Prediction: An Observational Study. Radiology. 2023;307(5):e222733.
Arunkumar C, Ramakrishnan S. Prediction of cancer using customised fuzzy rough machine learning approaches. Healthc Technol Lett. 2019;6(1):13-8.
Ashayeri H, Sobhi N, Pławiak P, Pedrammehr S, Alizadehsani R, Jafarizadeh A. Transfer Learning in Cancer Genetics, Mutation Detection, Gene Expression Analysis, and Syndrome Recognition. Cancers (Basel). 2024;16(11).
Aswathy R, Chalos VA, Suganya K, Sumathi S. Advancing miRNA cancer research through artificial intelligence: from biomarker discovery to therapeutic targeting. Med Oncol. 2024;42(1):30.
Azarkhalili B, Saberi A, Chitsaz H, Sharifi-Zarchi A. DeePathology: Deep Multi-Task Learning for Inferring Molecular Pathology from Cancer Transcriptome. Sci Rep. 2019;9(1):16526.
Azuaje F, Kim SY, Perez Hernandez D, Dittmar G. Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning. J Clin Med. 2019;8(10).
Bahado-Singh R, Vlachos KT, Aydas B, Gordevicius J, Radhakrishna U, Vishweswaraiah S. Precision Oncology: Artificial Intelligence and DNA Methylation Analysis of Circulating Cell-Free DNA for Lung Cancer Detection. Front Oncol. 2022;12:790645.
Bahado-Singh RO, Ibrahim A, Al-Wahab Z, Aydas B, Radhakrishna U, Yilmaz A, et al. Precision gynecologic oncology: circulating cell free DNA epigenomic analysis, artificial intelligence and the accurate detection of ovarian cancer. Sci Rep. 2022;12(1):18625.
Batra U, Nathany S, Nath SK, Jose JT, Sharma T, P P, et al. AI-based pipeline for early screening of lung cancer: integrating radiology, clinical, and genomics data. Lancet Reg Health Southeast Asia. 2024;24:100352.
Bernal YA, Blanco A, Oróstica K, Delgado I, Armisén R. Integration of RNA Editing with Multiomics Data Improves Machine Learning Models for Predicting Drug Responses in Breast Cancer Patients. Res Sq. 2024.
Bhat AA, Nisar S, Mukherjee S, Saha N, Yarravarapu N, Lone SN, et al. Integration of CRISPR/Cas9 with artificial intelligence for improved cancer therapeutics. J Transl Med. 2022;20(1):534.
Boyarskikh U, Pintus S, Mandrik N, Stelmashenko D, Kiselev I, Evshin I, et al. Computational master-regulator search reveals mTOR and PI3K pathways responsible for low sensitivity of NCI-H292 and A427 lung cancer cell lines to cytotoxic action of p53 activator Nutlin-3. BMC Med Genomics. 2018;11(Suppl 1):12.
Bujak J, Kłęk S, Balawejder M, Kociniak A, Wilkus K, Szatanek R, et al. Creating an Innovative Artificial Intelligence-Based Technology (TCRact) for Designing and Optimizing T Cell Receptors for Use in Cancer Immunotherapies: Protocol for an Observational Trial. JMIR Res Protoc. 2023;12:e45872.
Carreras J, Nakamura N, Hamoudi R. Artificial Intelligence Analysis of Gene Expression Predicted the Overall Survival of Mantle Cell Lymphoma and a Large Pan-Cancer Series. Healthcare (Basel). 2022;10(1).
Castilho RM, Castilho LS, Palomares BH, Squarize CH. Determinants of Chromatin Organization in Aging and Cancer-Emerging Opportunities for Epigenetic Therapies and AI Technology. Genes (Basel). 2024;15(6).
Catto JW, Abbod MF, Wild PJ, Linkens DA, Pilarsky C, Rehman I, et al. The application of artificial intelligence to microarray data: identification of a novel gene signature to identify bladder cancer progression. Eur Urol. 2010;57(3):398-406.
Chang A, Prabhala S, Daneshkhah A, Lin J, Subramanian H, Roy HK, et al. Early screening of colorectal cancer using feature engineering with artificial intelligence-enhanced analysis of nanoscale chromatin modifications. Res Sq. 2023.
Chang A, Prabhala S, Daneshkhah A, Lin J, Subramanian H, Roy HK, et al. Early screening of colorectal cancer using feature engineering with artificial intelligence-enhanced analysis of nanoscale chromatin modifications. medRxiv. 2023.
Chang A, Prabhala S, Daneshkhah A, Lin J, Subramanian H, Roy HK, et al. Early screening of colorectal cancer using feature engineering with artificial intelligence-enhanced analysis of nanoscale chromatin modifications. Sci Rep. 2024;14(1):7808.
Charpidou A, Hardavella G, Boutsikou E, Panagiotou E, Simsek G, Verbeke K, et al. Unravelling the diagnostic pathology and molecular biomarkers in lung cancer. Breathe (Sheff). 2024;20(2):230192.
Chebanov DK, Misyurin VA, Shubina IZ. An algorithm for drug discovery based on deep learning with an example of developing a drug for the treatment of lung cancer. Front Bioinform. 2023;3:1225149.
Chen T, Li X, Mao Q, Wang Y, Li H, Wang C, et al. An artificial intelligence method to assess the tumor microenvironment with treatment outcomes for gastric cancer patients after gastrectomy. J Transl Med. 2022;20(1):100.
Chen X, Chen DG, Zhao Z, Balko JM, Chen J. Artificial image objects for classification of breast cancer biomarkers with transcriptome sequencing data and convolutional neural network algorithms. Breast Cancer Res. 2021;23(1):96.
Chen X, Lin X, Shen Q, Qian X. Combined Spiral Transformation and Model-Driven Multi-Modal Deep Learning Scheme for Automatic Prediction of TP53 Mutation in Pancreatic Cancer. IEEE Trans Med Imaging. 2021;40(2):735-47.
Chen Y, Shao X, Shi K, Rominger A, Caobelli F. AI in Breast Cancer Imaging: An Update and Future Trends. Semin Nucl Med. 2025;55(3):358-70.
Chen Y, Yan W, Xie Z, Guo W, Lu D, Lv Z, et al. Comparative analysis of target gene exon sequencing by cognitive technology using a next generation sequencing platform in patients with lung cancer. Mol Clin Oncol. 2021;14(2):36.
Chi H, Chen H, Wang R, Zhang J, Jiang L, Zhang S, et al. Proposing new early detection indicators for pancreatic cancer: Combining machine learning and neural networks for serum miRNA-based diagnostic model. Front Oncol. 2023;13:1244578.
Chou HH, Chen YH, Lin CT, Chang HT, Wu AC, Tsai JL, et al. AI-driven patient support: Evaluating the effectiveness of ChatGPT-4 in addressing queries about ovarian cancer compared with healthcare professionals in gynecologic oncology. Support Care Cancer. 2025;33(4):337.
Choudhery MS, Arif T, Mahmood R, Harris DT. CAR-T-Cell-Based Cancer Immunotherapies: Potentials, Limitations, and Future Prospects. J Clin Med. 2024;13(11).
Contaldi C, D'Aniello C, Panico D, Zito A, Calabrò P, Di Lorenzo E, et al. Cancer-Therapy-Related Cardiac Dysfunction: Latest Advances in Prevention and Treatment. Life (Basel). 2025;15(3).
Cook D, Biancalana M, Liadis N, Lopez Ramos D, Zhang Y, Patel S, et al. Next generation immuno-oncology tumor profiling using a rapid, non-invasive, computational biophysics biomarker in early-stage breast cancer. Front Artif Intell. 2023;6:1153083.
Corti C, Binboğa Kurt B, Koca B, Rahman T, Conforti F, Pala L, et al. Estrogen Signaling in Early-Stage Breast Cancer: Impact on Neoadjuvant Chemotherapy and Immunotherapy. Cancer Treat Rev. 2025;132:102852.
Crawford ED, Bryce AH, Hussain MH, Agarwal N, Beltran H, Cooperberg MR, et al. Expert Perspectives on Controversies in Castration-Sensitive Prostate Cancer Management: Narrative Review and Report of the First US Prostate Cancer Conference Part 1. JU Open Plus. 2024;2(4).
Dadhania V, Gonzalez D, Yousif M, Cheng J, Morgan TM, Spratt DE, et al. Leveraging artificial intelligence to predict ERG gene fusion status in prostate cancer. BMC Cancer. 2022;22(1):494.
Daneshkhah A, Prabhala S, Viswanathan P, Subramanian H, Lin J, Chang AS, et al. Early detection of lung cancer using artificial intelligence-enhanced optical nanosensing of chromatin alterations in field carcinogenesis. Sci Rep. 2023;13(1):13702.
Dashtban M, Balafar M. Gene selection for microarray cancer classification using a new evolutionary method employing artificial intelligence concepts. Genomics. 2017;109(2):91-107.
Dixit S, Kumar A, Srinivasan K. A Current Review of Machine Learning and Deep Learning Models in Oral Cancer Diagnosis: Recent Technologies, Open Challenges, and Future Research Directions. Diagnostics (Basel). 2023;13(7).
Drogan C, Kupfer SS. Colorectal Cancer Screening Recommendations and Outcomes in Lynch Syndrome. Gastrointest Endosc Clin N Am. 2022;32(1):59-74.
Ebadi AR, Soleimani A, Ghaderzadeh A. Providing an optimized model to detect driver genes from heterogeneous cancer samples using restriction in subspace learning. Sci Rep. 2021;11(1):9171.
Ekholm A, Wang Y, Vallon-Christersson J, Boissin C, Rantalainen M. Prediction of gene expression-based breast cancer proliferation scores from histopathology whole slide images using deep learning. BMC Cancer. 2024;24(1):1510.
El-Deiry WS, Bresson C, Wunder F, Carneiro BA, Dizon DS, Warner JL, et al. Worldwide Innovative Network (WIN) Consortium in Personalized Cancer Medicine: Bringing next-generation precision oncology to patients. Oncotarget. 2025;16:140-62.
Elsharawy KA, Gerds TA, Rakha EA, Dalton LW. Artificial intelligence grading of breast cancer: a promising method to refine prognostic classification for management precision. Histopathology. 2021;79(2):187-99.
Emam MM, Houssein EH, Samee NA, Alkhalifa AK, Hosney ME. Optimizing cancer diagnosis: A hybrid approach of genetic operators and Sinh Cosh Optimizer for tumor identification and feature gene selection. Comput Biol Med. 2024;180:108984.
Eminaga O, Leyh-Bannurah SR, Shariat SF, Krabbe LM, Lau H, Xing L, et al. Artificial Intelligence Reveals Distinct Prognostic Subgroups of Muscle-Invasive Bladder Cancer on Histology Images. Cancers (Basel). 2023;15(20).
Erak E, Oliveira LD, Mendes AA, Dairo O, Ertunc O, Kulac I, et al. Predicting Prostate Cancer Molecular Subtype With Deep Learning on Histopathologic Images. Mod Pathol. 2023;36(10):100247.
Fasano C, Lepore Signorile M, De Marco K, Forte G, Disciglio V, Sanese P, et al. In Silico Deciphering of the Potential Impact of Variants of Uncertain Significance in Hereditary Colorectal Cancer Syndromes. Cells. 2024;13(16).
Feltes BC, Poloni JF, Dorn M. Benchmarking and Testing Machine Learning Approaches with BARRA:CuRDa, a Curated RNA-Seq Database for Cancer Research. J Comput Biol. 2021;28(9):931-44.
Fernandez G, Prastawa M, Madduri AS, Scott R, Marami B, Shpalensky N, et al. Development and validation of an AI-enabled digital breast cancer assay to predict early-stage breast cancer recurrence within 6 years. Breast Cancer Res. 2022;24(1):93.
Firooz A, Funkhouser AT, Martin JC, Edenfield WJ, Valafar H, Blenda AV. Comprehensive and User-Analytics-Friendly Cancer Patient Database for Physicians and Researchers. ArXiv. 2023.
Gao Y, Zhang XX, Li S, Lu Y. [Application of artificial intelligence technology in the diagnosis and treatment of colorectal cancer]. Zhonghua Wei Chang Wai Ke Za Zhi. 2020;23(12):1155-8.
Gessain G, Lacroix-Triki M. Computational pathology for breast cancer: Where do we stand for prognostic applications? Breast. 2025;81:104464.
Ghazal H, El-Absawy EA, Ead W, Hasan ME. Machine learning-guided differential gene expression analysis identifies a highly-connected seven-gene cluster in triple-negative breast cancer. Biomedicine (Taipei). 2024;14(4):15-35.
Goggins M. The role of biomarkers in the early detection of pancreatic cancer. Fam Cancer. 2024;23(3):309-22.
Good BM, Loguercio S, Griffith OL, Nanis M, Wu C, Su AI. The cure: design and evaluation of a crowdsourcing game for gene selection for breast cancer survival prediction. JMIR Serious Games. 2014;2(2):e7.
Greer BT, Khan J. Diagnostic classification of cancer using DNA microarrays and artificial intelligence. Ann N Y Acad Sci. 2004;1020:49-66.
Guo X, Xing J, Cao Y, Yang W, Shi X, Mu R, et al. Machine learning based anoikis signature predicts personalized treatment strategy of breast cancer. Front Immunol. 2024;15:1491508.
Guo Y, Li T, Gong B, Hu Y, Wang S, Yang L, et al. From Images to Genes: Radiogenomics Based on Artificial Intelligence to Achieve Non-Invasive Precision Medicine in Cancer Patients. Adv Sci (Weinh). 2025;12(2):e2408069.
Gupta S, Gupta MK, Shabaz M, Sharma A. Deep learning techniques for cancer classification using microarray gene expression data. Front Physiol. 2022;13:952709.
Hajeebu S, Ngembus NJ, Bandi PS, Panigrahy PK, Heindl S. Machine Learning as a Tool in Investigating the Possible Role of Microbiome in Development and Treatment of Cancer. Cureus. 2021;13(8):e17415.
Hamidi F, Gilani N, Arabi Belaghi R, Yaghoobi H, Babaei E, Sarbakhsh P, et al. Identifying potential circulating miRNA biomarkers for the diagnosis and prediction of ovarian cancer using machine-learning approach: application of Boruta. Front Digit Health. 2023;5:1187578.
Hamidi F, Gilani N, Belaghi RA, Sarbakhsh P, Edgünlü T, Santaguida P. Exploration of Potential miRNA Biomarkers and Prediction for Ovarian Cancer Using Artificial Intelligence. Front Genet. 2021;12:724785.
Harne PS, Harne V, Wray C, Thosani N. Endoscopic innovations in diagnosis and management of pancreatic cancer: a narrative review and future directions. Therap Adv Gastroenterol. 2024;17:17562848241297434.
Haznedar B, Arslan MT, Kalinli A. Optimizing ANFIS using simulated annealing algorithm for classification of microarray gene expression cancer data. Med Biol Eng Comput. 2021;59(3):497-509.
He T, Huang L, Li J, Wang P, Zhang Z. Potential Prognostic Immune Biomarkers of Overall Survival in Ovarian Cancer Through Comprehensive Bioinformatics Analysis: A Novel Artificial Intelligence Survival Prediction System. Front Med (Lausanne). 2021;8:587496.
Heald B, Keel E, Marquard J, Burke CA, Kalady MF, Church JM, et al. Using chatbots to screen for heritable cancer syndromes in patients undergoing routine colonoscopy. J Med Genet. 2021;58(12):807-14.
Hillis E, Bhattarai K, Abrams Z. Evaluating Generative AI's Ability to Identify Cancer Subtypes in Publicly Available Structured Genetic Datasets. J Pers Med. 2024;14(10).
Howard FM, Hieromnimon HM, Ramesh S, Dolezal J, Kochanny S, Zhang Q, et al. Generative adversarial networks accurately reconstruct pan-cancer histology from pathologic, genomic, and radiographic latent features. Sci Adv. 2024;10(46):eadq0856.
Howard FM, Hieromnimon HM, Ramesh S, Dolezal J, Kochanny S, Zhang Q, et al. Generative Adversarial Networks Accurately Reconstruct Pan-Cancer Histology from Pathologic, Genomic, and Radiographic Latent Features. bioRxiv. 2024.
Hsu JC, Nguyen PA, Phuc PT, Lo TC, Hsu MH, Hsieh MS, et al. Development and Validation of Novel Deep-Learning Models Using Multiple Data Types for Lung Cancer Survival. Cancers (Basel). 2022;14(22).
Huang LM, Yang WJ, Huang ZY, Tang CW, Li J. Artificial intelligence technique in detection of early esophageal cancer. World J Gastroenterol. 2020;26(39):5959-69.
Hummel JJ, Liu D, Tallon E, Snyder J, Warren W, Shyu CR, et al. Identification of Genomic Signatures for Colorectal Cancer Survival Using Exploratory Data Mining. Int J Mol Sci. 2024;25(6).
Hüneburg R, Bucksch K, Schmeißer F, Heling D, Marwitz T, Aretz S, et al. Real-time use of artificial intelligence (CADEYE) in colorectal cancer surveillance of patients with Lynch syndrome-A randomized controlled pilot trial (CADLY). United European Gastroenterol J. 2023;11(1):60-8.
Inamura K, Hamada T, Bullman S, Ugai T, Yachida S, Ogino S. Cancer as microenvironmental, systemic and environmental diseases: opportunity for transdisciplinary microbiomics science. Gut. 2022.
Inchingolo R, Maino C, Cannella R, Vernuccio F, Cortese F, Dezio M, et al. Radiomics in colorectal cancer patients. World J Gastroenterol. 2023;29(19):2888-904.
Ishii S, Takamatsu M, Ninomiya H, Inamura K, Horai T, Iyoda A, et al. Machine learning-based gene alteration prediction model for primary lung cancer using cytologic images. Cancer Cytopathol. 2022;130(10):812-23.
Iwamoto T, Kajiwara Y, Zhu Y, Iha S. Biomarkers of neoadjuvant/adjuvant chemotherapy for breast cancer. Chin Clin Oncol. 2020;9(3):27.
Iwatate Y, Yokota H, Hoshino I, Ishige F, Kuwayama N, Itami M, et al. Machine learning with imaging features to predict the expression of ITGAV, which is a poor prognostic factor derived from transcriptome analysis in pancreatic cancer. Int J Oncol. 2022;60(5).
Jiang FN, Dai LJ, Wu YD, Yang SB, Liang YX, Zhang X, et al. The study of multiple diagnosis models of human prostate cancer based on Taylor database by artificial neural networks. J Chin Med Assoc. 2020;83(5):471-7.
Jiang S, Yang X, Lin Y, Liu Y, Tran LJ, Zhang J, et al. Unveiling Anoikis-related genes: A breakthrough in the prognosis of bladder cancer. J Gene Med. 2024;26(1):e3651.
Joshi S, Natteshan NVS, Rastogi R, Sampathkumar A, Pandimurugan V, Sountharrajan S. A novel artificial intelligence approach to detect the breast cancer using KNNet technique with EPM gene profiling. Funct Integr Genomics. 2023;23(4):302.
Katifelis H, Gazouli M. RNA biomarkers in cancer therapeutics: The promise of personalized oncology. Adv Clin Chem. 2024;123:179-219.
Kaushik M, Chandra Joshi R, Kushwah AS, Gupta MK, Banerjee M, Burget R, et al. Cytokine gene variants and socio-demographic characteristics as predictors of cervical cancer: A machine learning approach. Comput Biol Med. 2021;134:104559.
Kaushik V, Plazzer JP, Macrae F. Evaluation of literature searching tools for curation of mismatch repair gene variants in hereditary colon cancer. Adv Genet (Hoboken). 2021;2(1):e10039.
Kel A, Boyarskikh U, Stegmaier P, Leskov LS, Sokolov AV, Yevshin I, et al. Walking pathways with positive feedback loops reveal DNA methylation biomarkers of colorectal cancer. BMC Bioinformatics. 2019;20(Suppl 4):119.
Kempowsky-Hamon T, Valle C, Lacroix-Triki M, Hedjazi L, Trouilh L, Lamarre S, et al. Fuzzy logic selection as a new reliable tool to identify molecular grade signatures in breast cancer--the INNODIAG study. BMC Med Genomics. 2015;8:3.
Kim J, Fahmy V, Haffty BG. Radiation therapy for triple-negative breast cancer: from molecular insights to clinical perspectives. Expert Rev Anticancer Ther. 2024;24(5):211-7.
Kirienko M, Sollini M, Corbetta M, Voulaz E, Gozzi N, Interlenghi M, et al. Radiomics and gene expression profile to characterise the disease and predict outcome in patients with lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(11):3643-55.
Kossai M, Radosevic-Robin N, Penault-Llorca F. Refining patient selection for breast cancer immunotherapy: beyond PD-L1. ESMO Open. 2021;6(5):100257.
Kováčová M, Hlaváč V, Koževnikovová R, Rauš K, Gatěk J, Souček P. Artificial Intelligence-Driven Prediction Revealed CFTR Associated with Therapy Outcome of Breast Cancer: A Feasibility Study. Oncology. 2024;102(12):1029-40.
Kumar NM, Navaneeth N, Shettar A, Chelimeswamy A. Elements of liquid biopsies: isolation, analysis, and clinical application in cancer diagnosis to prognosis. Expert Rev Mol Diagn. 2024:1-12.
Kumar S, Das A. Peripheral blood mononuclear cell derived biomarker detection using eXplainable Artificial Intelligence (XAI) provides better diagnosis of breast cancer. Comput Biol Chem. 2023;104:107867.
Kumar S, Ranga A. Role of miRNAs in breast cancer development and progression: Current research. Biofactors. 2025;51(1):e2146.
Kuwatani M, Sakamoto N. Pathological and molecular diagnoses of early cancer with bile and pancreatic juice. Dig Endosc. 2022;34(7):1340-55.
Li B, Sun M, Yao P, Chang Z, Liu Z. Radiogenomics: A Valuable Tool for the Clinical Assessment and Research of Ovarian Cancer. J Comput Assist Tomogr. 2022;46(3):371-8.
Li J, Li X, Li M, Qiu H, Saad C, Zhao B, et al. Differential early diagnosis of benign versus malignant lung cancer using systematic pathway flux analysis of peripheral blood leukocytes. Sci Rep. 2022;12(1):5070.
Li J, Li ZP, Ruan WJ, Wang W. Colorectal cancer screening: The value of early detection and modern challenges. World J Gastroenterol. 2024;30(20):2726-30.
Li L, Li B, Wang G, Li S, Li X, Santos J, et al. Research on Precision Medicine AI Algorithm for Neuro Immune Gastrointestinal Diseases based on Quantum Biochemistry and Computational Cancer Genetics. Curr Pharm Biotechnol. 2025.
Li N, Lin J, Wang C, Ran X, Zhao Z. Artificial intelligence-driven integration of single-cell RNA sequencing and transcriptome analysis to decipher APOE's role in gastric cancer prognosis and therapy. Discov Oncol. 2025;16(1):314.
Li P, Wang W, Wang S, Cao G, Pan T, Huang Y, et al. PTPRC promoted CD8+ T cell mediated tumor immunity and drug sensitivity in breast cancer: based on pan-cancer analysis and artificial intelligence modeling of immunogenic cell death-based drug sensitivity stratification. Front Immunol. 2023;14:1145481.
Li Q, Keskus AG, Wagner J, Izydorczyk MB, Timp W, Sedlazeck FJ, et al. Unraveling the hidden complexity of cancer through long-read sequencing. Genome Res. 2025;35(4):599-620.
Li Y, Chen D, Wu X, Yang W, Chen Y. A narrative review of artificial intelligence-assisted histopathologic diagnosis and decision-making for non-small cell lung cancer: achievements and limitations. J Thorac Dis. 2021;13(12):7006-20.
Li Z, Ma Z, Zhou Q, Wang S, Yan Q, Zhuang H, et al. Identification by genetic algorithm optimized back propagation artificial neural network and validation of a four-gene signature for diagnosis and prognosis of pancreatic cancer. Heliyon. 2022;8(11):e11321.
Li Z, Napolitano A, Fedele M, Gao X, Napolitano F. AI identifies potent inducers of breast cancer stem cell differentiation based on adversarial learning from gene expression data. Brief Bioinform. 2024;25(3).
Lin PC, Tsai YS, Yeh YM, Shen MR. Cutting-Edge AI Technologies Meet Precision Medicine to Improve Cancer Care. Biomolecules. 2022;12(8).
Lin Y, Miao Z, Zhang X, Wei X, Hou J, Huang Y, et al. Identification of Key MicroRNAs and Mechanisms in Prostate Cancer Evolution Based on Biomarker Prioritization Model and Carcinogenic Survey. Front Genet. 2020;11:596826.
Liu C, Liu X, Wu F, Xie M, Feng Y, Hu C. Using Artificial Intelligence (Watson for Oncology) for Treatment Recommendations Amongst Chinese Patients with Lung Cancer: Feasibility Study. J Med Internet Res. 2018;20(9):e11087.
Liu C, Shi C, Wang S, Qi R, Gu W, Yu F, et al. Bridging the gap: how patient-derived lung cancer organoids are transforming personalized medicine. Front Cell Dev Biol. 2025;13:1554268.
Liu G, Zhao J, Tian G, Li S, Lu Y. Visualizing knowledge evolution trends and research hotspots of artificial intelligence in colorectal cancer: A bibliometric analysis. Front Oncol. 2022;12:925924.
Liu H, Zhang Y, Luo J. Contrastive learning-based histopathological features infer molecular subtypes and clinical outcomes of breast cancer from unannotated whole slide images. Comput Biol Med. 2024;170:107997.
Liu Q, Hu P. Association Analysis of Deep Genomic Features Extracted by Denoising Autoencoders in Breast Cancer. Cancers (Basel). 2019;11(4).
Liu T, Zhang B, Gao Y, Zhang X, Tong J, Li Z. Identification of ACHE as the hub gene targeting solasonine associated with non-small cell lung cancer (NSCLC) using integrated bioinformatics analysis. PeerJ. 2023;11:e16195.
Lococo F, Ghaly G, Flamini S, Campanella A, Chiappetta M, Bria E, et al. Artificial intelligence applications in personalizing lung cancer management: state of the art and future perspectives. J Thorac Dis. 2024;16(10):7096-110.
Loeffler CML, Ortiz Bruechle N, Jung M, Seillier L, Rose M, Laleh NG, et al. Artificial Intelligence-based Detection of FGFR3 Mutational Status Directly from Routine Histology in Bladder Cancer: A Possible Preselection for Molecular Testing? Eur Urol Focus. 2022;8(2):472-9.
Lorkowski SW, Dermawan JK, Rubin BP. The practical utility of AI-assisted molecular profiling in the diagnosis and management of cancer of unknown primary: an updated review. Virchows Arch. 2024;484(2):369-75.
Low SK, Zembutsu H, Nakamura Y. Breast cancer: The translation of big genomic data to cancer precision medicine. Cancer Sci. 2018;109(3):497-506.
Lu H, Zhang J, Cao Y, Wu S, Wei Y, Yin R. Advances in applications of artificial intelligence algorithms for cancer-related miRNA research. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2024;53(2):231-43.
Mahajan A, Sahu A, Ashtekar R, Kulkarni T, Shukla S, Agarwal U, et al. Glioma radiogenomics and artificial intelligence: road to precision cancer medicine. Clin Radiol. 2023;78(2):137-49.
Majumder A, Sen D. Artificial intelligence in cancer diagnostics and therapy: current perspectives. Indian J Cancer. 2021;58(4):481-92.
Malik D, Mahendiratta S, Kaur H, Medhi B. Futuristic approach to cancer treatment. Gene. 2021;805:145906.
Manescu P, Geradts J, Fernandez-Reyes D. Computational Pathology Detection of Hypoxia-Induced Morphologic Changes in Breast Cancer. Am J Pathol. 2025;195(4):663-70.
Marchiò C, Criscitiello C, Scatena C, Santinelli A, Graziano P, Malapelle U, et al. Think "HER2" different: integrative diagnostic approaches for HER2-low breast cancer. Pathologica. 2023;115(6):292-301.
Martínez-Romero M, Vázquez-Naya JM, Rabuñal JR, Pita-Fernández S, Macenlle R, Castro-Alvariño J, et al. Artificial intelligence techniques for colorectal cancer drug metabolism: ontology and complex network. Curr Drug Metab. 2010;11(4):347-68.
Masud SF, Mark N, Goss T, Malinowski D, Schnitt SJ, Sparano JA, et al. U.S. payer budget impact of using an AI-augmented cancer risk discrimination digital histopathology platform to identify high-risk of recurrence in women with early-stage invasive breast cancer. J Med Econ. 2024;27(1):972-81.
Maurya R, Chug I, Vudatha V, Palma AM. Applications of spatial transcriptomics and artificial intelligence to develop integrated management of pancreatic cancer. Adv Cancer Res. 2024;163:107-36.
Menon AV, Song B, Chao L, Sriram D, Chansky P, Bakshi I, et al. Unraveling the future of genomics: CRISPR, single-cell omics, and the applications in cancer and immunology. Front Genome Ed. 2025;7:1565387.
Menon T, Gopal S, Rastogi Verma S. Targeted therapies in non-small cell lung cancer and the potential role of AI interventions in cancer treatment. Biotechnol Appl Biochem. 2023;70(1):344-56.
Mirza Z, Ansari MS, Iqbal MS, Ahmad N, Alganmi N, Banjar H, et al. Identification of Novel Diagnostic and Prognostic Gene Signature Biomarkers for Breast Cancer Using Artificial Intelligence and Machine Learning Assisted Transcriptomics Analysis. Cancers (Basel). 2023;15(12).
Mkrtchyan GV, Veviorskiy A, Izumchenko E, Shneyderman A, Pun FW, Ozerov IV, et al. High-confidence cancer patient stratification through multiomics investigation of DNA repair disorders. Cell Death Dis. 2022;13(11):999.
Mohamed G, Hamdy O, Alkallas A, Tahoun Y, Gomaa MM, Moaz I, et al. Role of artificial intelligence -based machine learning model in predicting HER2/neu gene status in breast cancer. Pathol Res Pract. 2025;270:155927.
Muñoz JP, Pérez-Moreno P, Pérez Y, Calaf GM. The Role of MicroRNAs in Breast Cancer and the Challenges of Their Clinical Application. Diagnostics (Basel). 2023;13(19).
Murcia Pienkowski V, Skoczylas P, Zaremba A, Kłęk S, Balawejder M, Biernat P, et al. Harnessing the power of AI in precision medicine: NGS-based therapeutic insights for colorectal cancer cohort. Front Oncol. 2024;14:1407465.
Nies HW, Mohamad MS, Zakaria Z, Chan WH, Remli MA, Nies YH. Enhanced Directed Random Walk for the Identification of Breast Cancer Prognostic Markers from Multiclass Expression Data. Entropy (Basel). 2021;23(9).
O'Shea RJ, Tsoka S, Cook GJ, Goh V. Sparse Regression in Cancer Genomics: Comparing Variable Selection and Predictions in Real World Data. Cancer Inform. 2021;20:11769351211056298.
Obrzut B, Kusy M, Semczuk A, Obrzut M, Kluska J. Prediction of 5-year overall survival in cervical cancer patients treated with radical hysterectomy using computational intelligence methods. BMC Cancer. 2017;17(1):840.
Odhiambo P, Okello H, Wakaanya A, Wekesa C, Okoth P. Mutational signatures for breast cancer diagnosis using artificial intelligence. J Egypt Natl Canc Inst. 2023;35(1):14.
Ogunleye AZ, Piyawajanusorn C, Gonçalves A, Ghislat G, Ballester PJ. Interpretable Machine Learning Models to Predict the Resistance of Breast Cancer Patients to Doxorubicin from Their microRNA Profiles. Adv Sci (Weinh). 2022;9(24):e2201501.
Okamoto T, Natsume Y, Doi M, Nosato H, Iwaki T, Yamanaka H, et al. Integration of human inspection and artificial intelligence-based morphological typing of patient-derived organoids reveals interpatient heterogeneity of colorectal cancer. Cancer Sci. 2022;113(8):2693-703.
Pachynski RK, Kim EH, Miheecheva N, Kotlov N, Ramachandran A, Postovalova E, et al. Single-cell Spatial Proteomic Revelations on the Multiparametric MRI Heterogeneity of Clinically Significant Prostate Cancer. Clin Cancer Res. 2021;27(12):3478-90.
Papalexis P, Georgakopoulou VE, Drossos PV, Thymara E, Nonni A, Lazaris AC, et al. Precision medicine in breast cancer (Review). Mol Clin Oncol. 2024;21(5):78.
Park J, Cho HG, Park J, Lee G, Kim HS, Paeng K, et al. Artificial Intelligence-Powered Hematoxylin and Eosin Analyzer Reveals Distinct Immunologic and Mutational Profiles among Immune Phenotypes in Non-Small-Cell Lung Cancer. Am J Pathol. 2022;192(4):701-11.
Patel NM, Michelini VV, Snell JM, Balu S, Hoyle AP, Parker JS, et al. Enhancing Next-Generation Sequencing-Guided Cancer Care Through Cognitive Computing. Oncologist. 2018;23(2):179-85.
Patel SK, George B, Rai V. Artificial Intelligence to Decode Cancer Mechanism: Beyond Patient Stratification for Precision Oncology. Front Pharmacol. 2020;11:1177.
Patil MR, Bihari A. Role of artificial intelligence in cancer detection using protein p53: A Review. Mol Biol Rep. 2024;52(1):46.
Pellegrini M. Accurate prediction of breast cancer survival through coherent voting networks with gene expression profiling. Sci Rep. 2021;11(1):14645.
Phan NN, Hsu CY, Huang CC, Tseng LM, Chuang EY. Prediction of Breast Cancer Recurrence Using a Deep Convolutional Neural Network Without Region-of-Interest Labeling. Front Oncol. 2021;11:734015.
Prime SS, Cirillo N, Cheong SC, Prime MS, Parkinson EK. Targeting the genetic landscape of oral potentially malignant disorders has the potential as a preventative strategy in oral cancer. Cancer Lett. 2021;518:102-14.
Pun FW, Leung GHD, Leung HW, Rice J, Schmauck-Medina T, Lautrup S, et al. A comprehensive AI-driven analysis of large-scale omic datasets reveals novel dual-purpose targets for the treatment of cancer and aging. Aging Cell. 2023;22(12):e14017.
Qiao Y, Xie D, Li Z, Cao S, Zhao D. Global research trends on biomarkers for cancer immunotherapy: Visualization and bibliometric analysis. Hum Vaccin Immunother. 2025;21(1):2435598.
Rajdeo P, Aronow B, Surya Prasath VB. Deep learning-based multimodal spatial transcriptomics analysis for cancer. Adv Cancer Res. 2024;163:1-38.
Ramesh A, Bharde A, D'Souza A, Jadhav B, Prajapati S, Hariramani K, et al. Clinical and Technical Validation of OncoIndx(®) Assay-A Comprehensive Genome Profiling Assay for Pan-Cancer Investigations. Cancers (Basel). 2024;16(19).
Ramírez-Mena A, Andrés-León E, Alvarez-Cubero MJ, Anguita-Ruiz A, Martinez-Gonzalez LJ, Alcala-Fdez J. Explainable artificial intelligence to predict and identify prostate cancer tissue by gene expression. Comput Methods Programs Biomed. 2023;240:107719.
Ravindran U, Gunavathi C. Deep learning assisted cancer disease prediction from gene expression data using WT-GAN. BMC Med Inform Decis Mak. 2024;24(1):311.
Rejali L, Nazemalhosseini-Mojarad E, Valle L, Maghsoudloo M, Asadzadeh Aghdaei H, Mohammadpoor H, et al. Identification of antisense and sense RNAs of intracrine fibroblast growth factor components as novel biomarkers in colorectal cancer and in silico studies for drug and nanodrug repurposing. Environ Res. 2023;239(Pt 1):117117.
Ren S, Li J, Dorado J, Sierra A, González-Díaz H, Duardo A, et al. From molecular mechanisms of prostate cancer to translational applications: based on multi-omics fusion analysis and intelligent medicine. Health Inf Sci Syst. 2024;12(1):6.
Ricci Lara MA, Esposito MI, Aineseder M, López Grove R, Cerini MA, Verzura MA, et al. Radiomics and Machine Learning for prediction of two-year disease-specific mortality and KRAS mutation status in metastatic colorectal cancer. Surg Oncol. 2023;51:101986.
Russo V, Lallo E, Munnia A, Spedicato M, Messerini L, D'Aurizio R, et al. Artificial Intelligence Predictive Models of Response to Cytotoxic Chemotherapy Alone or Combined to Targeted Therapy for Metastatic Colorectal Cancer Patients: A Systematic Review and Meta-Analysis. Cancers (Basel). 2022;14(16).
Sakamoto T, Furukawa T, Lami K, Pham HHN, Uegami W, Kuroda K, et al. A narrative review of digital pathology and artificial intelligence: focusing on lung cancer. Transl Lung Cancer Res. 2020;9(5):2255-76.
Samuel R, Daniel R. Intelligent computation in cancer gene therapy. Front Genet. 2024;15:1252246.
Schito L, Rey-Keim S. Transcriptional regulation of hypoxic cancer cell metabolism and artificial intelligence. Trends Cancer. 2025;11(2):88-90.
Serafini MS, Lopez-Perez L, Fico G, Licitra L, De Cecco L, Resteghini C. Transcriptomics and Epigenomics in head and neck cancer: available repositories and molecular signatures. Cancers Head Neck. 2020;5:2.
Shaaban AM, Kaur T, Provenzano E. HER2-Low Breast Cancer-Current Knowledge and Future Directions. Medicina (Kaunas). 2025;61(4).
Shanshan Z, Fanfei D, Xuan S, Huina L, Ye Z, Jiayu L, et al. Anoikis regulator GLI2 promotes NC cell immunity escape by TGF-β-mediated non-classic hedgehog signaling in colorectal cancer: based on artificial intelligence and big data analysis. Aging (Albany NY). 2023;15(24):14733-48.
Shao J, Ma J, Zhang S, Li J, Dai H, Liang S, et al. Radiogenomic System for Non-Invasive Identification of Multiple Actionable Mutations and PD-L1 Expression in Non-Small Cell Lung Cancer Based on CT Images. Cancers (Basel). 2022;14(19).
Sherbet GV, Woo WL, Dlay S. Application of Artificial Intelligence-based Technology in Cancer Management: A Commentary on the Deployment of Artificial Neural Networks. Anticancer Res. 2018;38(12):6607-13.
Shimada Y, Okuda S, Watanabe Y, Tajima Y, Nagahashi M, Ichikawa H, et al. Histopathological characteristics and artificial intelligence for predicting tumor mutational burden-high colorectal cancer. J Gastroenterol. 2021;56(6):547-59.
Shimizu H, Nakayama KI. A 23 gene-based molecular prognostic score precisely predicts overall survival of breast cancer patients. EBioMedicine. 2019;46:150-9.
Shmatko A, Ghaffari Laleh N, Gerstung M, Kather JN. Artificial intelligence in histopathology: enhancing cancer research and clinical oncology. Nat Cancer. 2022;3(9):1026-38.
Shu P, Liu N, Luo X, Tang Y, Chen Z, Li D, et al. An immune-related gene prognostic prediction risk model for neoadjuvant chemoradiotherapy in rectal cancer using artificial intelligence. Front Oncol. 2024;14:1294440.
Singh M, Anvekar P, Baraskar B, Pallipamu N, Gadam S, Cherukuri ASS, et al. Prospective of Pancreatic Cancer Diagnosis Using Cardiac Sensing. J Imaging. 2023;9(8).
Siyam AA. The Role of Neural Network Analysis in Identifying Predictors of Gastric Cancer. Acta Inform Med. 2024;32(2):99-106.
Sohrabei S, Moghaddasi H, Hosseini A, Ehsanzadeh SJ. Investigating the effects of artificial intelligence on the personalization of breast cancer management: a systematic study. BMC Cancer. 2024;24(1):852.
Sokouti M, Sokouti B. Cancer genetics and deep learning applications for diagnosis, prognosis, and categorization. J Biol Methods. 2024;11(3):e99010017.
Srinivasan G, Le MK, Azher Z, Liu X, Vaickus L, Kaur H, et al. Histology-Based Virtual RNA Inference Identifies Pathways Associated with Metastasis Risk in Colorectal Cancer. medRxiv. 2025.
Suarez-Ibarrola R, Hein S, Reis G, Gratzke C, Miernik A. Current and future applications of machine and deep learning in urology: a review of the literature on urolithiasis, renal cell carcinoma, and bladder and prostate cancer. World J Urol. 2020;38(10):2329-47.
Suh DH, Kim M, Kim K, Kim HJ, Lee KH, Kim JW. Major clinical research advances in gynecologic cancer in 2016: 10-year special edition. J Gynecol Oncol. 2017;28(3):e45.
Takeshita T, Iwase H, Wu R, Ziazadeh D, Yan L, Takabe K. Development of a Machine Learning-Based Prognostic Model for Hormone Receptor-Positive Breast Cancer Using Nine-Gene Expression Signature. World J Oncol. 2023;14(5):406-22.
Terada Y, Takahashi T, Hayakawa T, Ono A, Kawata T, Isaka M, et al. Artificial Intelligence-Powered Prediction of ALK Gene Rearrangement in Patients With Non-Small-Cell Lung Cancer. JCO Clin Cancer Inform. 2022;6:e2200070.
Tiwari PK, Ko TH, Dubey R, Chouhan M, Tsai LW, Singh HN, et al. CRISPR/Cas9 as a therapeutic tool for triple negative breast cancer: from bench to clinics. Front Mol Biosci. 2023;10:1214489.
Tran NL, Kim H, Shin CH, Ko E, Oh SJ. Artificial intelligence-driven new drug discovery targeting serine/threonine kinase 33 for cancer treatment. Cancer Cell Int. 2023;23(1):321.
Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Cǎlin AM, Delli Pizzi A, et al. Predicting response to cancer immunotherapy using noninvasive radiomic biomarkers. Ann Oncol. 2019;30(6):998-1004.
Tsuji S, Aburatani H. [Machine Learning Applications in Cancer Genome Medicine]. Gan To Kagaku Ryoho. 2019;46(3):423-6.
Uchikov P, Khalid U, Dedaj-Salad GH, Ghale D, Rajadurai H, Kraeva M, et al. Artificial Intelligence in Breast Cancer Diagnosis and Treatment: Advances in Imaging, Pathology, and Personalized Care. Life (Basel). 2024;14(11).
Velu U, Singh A, Nittala R, Yang J, Vijayakumar S, Cherukuri C, et al. Precision Population Cancer Medicine in Brain Tumors: A Potential Roadmap to Improve Outcomes and Strategize the Steps to Bring Interdisciplinary Interventions. Cureus. 2024;16(10):e71305.
Vo D, Ghosh P, Sahoo D. Artificial intelligence-guided discovery of gastric cancer continuum. Gastric Cancer. 2023;26(2):286-97.
Volovat SR, Augustin I, Zob D, Boboc D, Amurariti F, Volovat C, et al. Use of Personalized Biomarkers in Metastatic Colorectal Cancer and the Impact of AI. Cancers (Basel). 2022;14(19).
Wan H, Yang X, Sang G, Ruan Z, Ling Z, Zhang M, et al. CDKN2A was a cuproptosis-related gene in regulating chemotherapy resistance by the MAGE-A family in breast cancer: based on artificial intelligence (AI)-constructed pan-cancer risk model. Aging (Albany NY). 2023;15(20):11244-67.
Wang CW, Chu KL, Muzakky H, Lin YJ, Chao TK. Efficient Convolution Network to Assist Breast Cancer Diagnosis and Target Therapy. Cancers (Basel). 2023;15(15).
Wang J, Wen Y, Zhang Y, Wang Z, Jiang Y, Dai C, et al. An interpretable artificial intelligence framework for designing synthetic lethality-based anti-cancer combination therapies. J Adv Res. 2024;65:329-43.
Wang K, Yang X, Yang S, Du X, Shi R, Bai W, et al. A diagnostic test of two-dimensional ultrasonic feature extraction based on artificial intelligence combined with blood flow Adler classification and contrast-enhanced ultrasound for predicting HER-2-positive breast cancer. Transl Cancer Res. 2025;14(1):640-50.
Wang L, Liu Z, Liang R, Wang W, Zhu R, Li J, et al. Comprehensive machine-learning survival framework develops a consensus model in large-scale multicenter cohorts for pancreatic cancer. Elife. 2022;11.
Wang Q, Wei J, Chen Z, Zhang T, Zhong J, Zhong B, et al. Establishment of multiple diagnosis models for colorectal cancer with artificial neural networks. Oncol Lett. 2019;17(3):3314-22.
Wang S, Yu H, Gan Y, Wu Z, Li E, Li X, et al. Mining whole-lung information by artificial intelligence for predicting EGFR genotype and targeted therapy response in lung cancer: a multicohort study. Lancet Digit Health. 2022;4(5):e309-e19.
Wang T, Wang S, Li Z, Xie J, Du K, Hou J. Machine learning unveils key Redox signatures for enhanced breast Cancer therapy. Cancer Cell Int. 2024;24(1):368.
Wang X, Zou C, Zhang Y, Li X, Wang C, Ke F, et al. Prediction of BRCA Gene Mutation in Breast Cancer Based on Deep Learning and Histopathology Images. Front Genet. 2021;12:661109.
Wang Z, Hu Y, Cai J, Xie J, Li C, Wu X, et al. Potential value of novel multiparametric MRI radiomics for preoperative prediction of microsatellite instability and Ki-67 expression in endometrial cancer. Sci Rep. 2025;15(1):3226.
Wang Z, Qu L, Chen Q, Zhou Y, Duan H, Li B, et al. Deep learning-based multifeature integration robustly predicts central lymph node metastasis in papillary thyroid cancer. BMC Cancer. 2023;23(1):128.
Wild PJ, Catto JW, Abbod MF, Linkens DA, Herr A, Pilarsky C, et al. Artificial intelligence and bladder cancer arrays. Verh Dtsch Ges Pathol. 2007;91:308-19.
Withnell E, Zhang X, Sun K, Guo Y. XOmiVAE: an interpretable deep learning model for cancer classification using high-dimensional omics data. Brief Bioinform. 2021;22(6).
Wu G, Jochems A, Refaee T, Ibrahim A, Yan C, Sanduleanu S, et al. Structural and functional radiomics for lung cancer. Eur J Nucl Med Mol Imaging. 2021;48(12):3961-74.
Wu M, Zhang Y. Integrated bioinformatics, network pharmacology, and artificial intelligence to predict the mechanism of celastrol against muscle atrophy caused by colorectal cancer. Front Genet. 2022;13:1012932.
Wu X, Yan H, Qiu M, Qu X, Wang J, Xu S, et al. Comprehensive characterization of tumor microenvironment in colorectal cancer via molecular analysis. Elife. 2023;12.
Xie X, Dou CX, Luo MR, Zhang K, Liu Y, Zhou JW, et al. Plasma cell subtypes analyzed using artificial intelligence algorithm for predicting biochemical recurrence, immune escape potential, and immunotherapy response of prostate cancer. Front Immunol. 2022;13:946209.
Xu H, Liu Z, Weng S, Dang Q, Ge X, Zhang Y, et al. Artificial intelligence-driven consensus gene signatures for improving bladder cancer clinical outcomes identified by multi-center integration analysis. Mol Oncol. 2022;16(22):4023-42.
Xu Z, Li W, Dong X, Chen Y, Zhang D, Wang J, et al. Precision medicine in colorectal cancer: Leveraging multi-omics, spatial omics, and artificial intelligence. Clin Chim Acta. 2024;559:119686.
Yakar M, Etiz D. Prognostic factors of breast cancer brain metastasis. World J Clin Oncol. 2024;15(1):5-8.
Yang B, Dai X, Chen S, Li C, Yan B. Application of Surface-Enhanced Raman Spectroscopy in Head and Neck Cancer Diagnosis. Anal Chem. 2025;97(7):3781-98.
Yang D, Miao Y, Liu C, Zhang N, Zhang D, Guo Q, et al. Advances in artificial intelligence applications in the field of lung cancer. Front Oncol. 2024;14:1449068.
Yang R, Xiong X, Wang H, Li W. Explainable Machine Learning Model to Prediction EGFR Mutation in Lung Cancer. Front Oncol. 2022;12:924144.
Yang S, Li D. Role of microRNAs in triple‑negative breast cancer and new therapeutic concepts (Review). Oncol Lett. 2024;28(3):431.
Yang S, Seo J, Choi J, Kim SH, Kuk Y, Park KC, et al. Towards understanding cancer dormancy over strategic hitching up mechanisms to technologies. Mol Cancer. 2025;24(1):47.
Yang S, Wang Z, Wang C, Li C, Wang B. Comparative Evaluation of Machine Learning Models for Subtyping Triple-Negative Breast Cancer: A Deep Learning-Based Multi-Omics Data Integration Approach. J Cancer. 2024;15(12):3943-57.
Yang X, Wu Y, Xu S, Li H, Peng C, Cui X, et al. Targeting the inward rectifier potassium channel 5.1 in thyroid cancer: artificial intelligence-facilitated molecular docking for drug discovery. BMC Endocr Disord. 2023;23(1):113.
Yang Z, Zhou D, Huang J. Identifying Explainable Machine Learning Models and a Novel SFRP2(+) Fibroblast Signature as Predictors for Precision Medicine in Ovarian Cancer. Int J Mol Sci. 2023;24(23).
Yao Q, Hou W, Wu K, Bai Y, Long M, Diao X, et al. Using Whole Slide Gray Value Map to Predict HER2 Expression and FISH Status in Breast Cancer. Cancers (Basel). 2022;14(24).
Yates DR, Rehman I, Abbod MF, Meuth M, Cross SS, Linkens DA, et al. Promoter hypermethylation identifies progression risk in bladder cancer. Clin Cancer Res. 2007;13(7):2046-53.
Yin Z, Yao C, Zhang L, Qi S. Application of artificial intelligence in diagnosis and treatment of colorectal cancer: A novel Prospect. Front Med (Lausanne). 2023;10:1128084.
Yoshida T, Yatabe Y, Kato K, Ishii G, Hamada A, Mano H, et al. The evolution of cancer genomic medicine in Japan and the role of the National Cancer Center Japan. Cancer Biol Med. 2023;21(1):29-44.
You HS, Gao CX, Wang HB, Luo SS, Chen SY, Dong YL, et al. Concordance of Treatment Recommendations for Metastatic Non-Small-Cell Lung Cancer Between Watson for Oncology System and Medical Team. Cancer Manag Res. 2020;12:1947-58.
Zhang C, Correia C, Weiskittel TM, Tan SH, Meng-Lin K, Yu GT, et al. A Knowledge-Based Discovery Approach Couples Artificial Neural Networks With Weight Engineering to Uncover Immune-Related Processes Underpinning Clinical Traits of Breast Cancer. Front Immunol. 2022;13:920669.
Zhang C, Li N, Zhang P, Jiang Z, Cheng Y, Li H, et al. Advancing precision and personalized breast cancer treatment through multi-omics technologies. Am J Cancer Res. 2024;14(12):5614-27.
Zhang H, Peng Y. Unique Molecular Alteration of Lobular Breast Cancer: Association with Pathological Classification, Tumor Biology and Behavior, and Clinical Management. Cancers (Basel). 2025;17(3).
Zhang X, Chen Y, Cai C, Wang Y, Tan J, Fang Z, et al. Artificial intelligence predicts multiclass molecular signatures and subtypes directly from breast cancer histology: a multicenter retrospective study. Int J Surg. 2025;111(4):3109-14.
Zhang Y, Cui J, Wan W, Liu J. Multimodal Imaging under Artificial Intelligence Algorithm for the Diagnosis of Liver Cancer and Its Relationship with Expressions of EZH2 and p57. Comput Intell Neurosci. 2022;2022:4081654.
Zhang Y, Yu C, Zhao F, Xu H, Zhu C, Li Y. Landscape of Artificial Intelligence in Breast Cancer (2000-2021): A Bibliometric Analysis. Front Biosci (Landmark Ed). 2022;27(8):224.
Zhang Z, He T, Huang L, Li J, Wang P. Immune gene prognostic signature for disease free survival of gastric cancer: Translational research of an artificial intelligence survival predictive system. Comput Struct Biotechnol J. 2021;19:2329-46.
Zhang Z, Huang L, Li J, Wang P. Bioinformatics analysis reveals immune prognostic markers for overall survival of colorectal cancer patients: a novel machine learning survival predictive system. BMC Bioinformatics. 2022;23(1):124.
Zhang Z, Li J, He T, Ding J. Bioinformatics Identified 17 Immune Genes as Prognostic Biomarkers for Breast Cancer: Application Study Based on Artificial Intelligence Algorithms. Front Oncol. 2020;10:330.
Zhao K, Wu L, Huang Y, Yao S, Xu Z, Lin H, et al. Deep learning quantified mucus-tumor ratio predicting survival of patients with colorectal cancer using whole-slide images. Precis Clin Med. 2021;4(1):17-24.
Zhao Y, Pan Z, Namburi S, Pattison A, Posner A, Balachander S, et al. CUP-AI-Dx: A tool for inferring cancer tissue of origin and molecular subtype using RNA gene-expression data and artificial intelligence. EBioMedicine. 2020;61:103030.
Zhao Y, Xiong S, Ren Q, Wang J, Li M, Yang L, et al. Deep learning using histological images for gene mutation prediction in lung cancer: a multicentre retrospective study. Lancet Oncol. 2025;26(1):136-46.
Zhao Z, Yang Y, Sun Z, Fan L, Liu L. Autophagy Associated Genes (ARGs) -Based Predictive Model AIDPS for Prostate Cancer. J Cell Mol Med. 2025;29(1):e70213.
Zhou L, Mao C, Fu T, Ding X, Bertolaccini L, Liu A, et al. Development of an AI model for predicting hypoxia status and prognosis in non-small cell lung cancer using multi-modal data. Transl Lung Cancer Res. 2024;13(12):3642-56.
Zhou X, Dai J, Lu Y, Zhao Q, Liu Y, Wang C, et al. Whole slide image based prognosis prediction in rectal cancer using unsupervised artificial intelligence. BMC Cancer. 2024;24(1):1523.
Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, et al. Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. Adv Sci (Weinh). 2020;7(19):2001447.
Zhou XY, Ding KF, Li J. [Progress in evaluating the risk of lymph node metastasis in early colorectal cancer]. Zhonghua Wei Chang Wai Ke Za Zhi. 2023;26(5):492-8.
Zhou Y, Peng S, Wang H, Cai X, Wang Q. Review of Personalized Medicine and Pharmacogenomics of Anti-Cancer Compounds and Natural Products. Genes (Basel). 2024;15(4).
Alharbi F, Vakanski A. Machine Learning Methods for Cancer Classification Using Gene Expression Data: A Review. Bioengineering (Basel). 2023;10(2).
Bashiri A, Ghazisaeedi M, Safdari R, Shahmoradi L, Ehtesham H. Improving the Prediction of Survival in Cancer Patients by Using Machine Learning Techniques: Experience of Gene Expression Data: A Narrative Review. Iran J Public Health. 2017;46(2):165-72.
Chen J, Chen A, Yang S, Liu J, Xie C, Jiang H. Accuracy of machine learning in preoperative identification of genetic mutation status in lung cancer: A systematic review and meta-analysis. Radiother Oncol. 2024;196:110325.
Guang B, Gao X, Chen X, Li R, Ma L. Dissection of action mechanisms of Zuogui Pill in the treatment of liver cancer based on machine learning and network pharmacology: A review. Medicine (Baltimore). 2023;102(42):e35628.
Huang YY, Bao TY, Huang XQ, Lan QW, Huang ZM, Chen YH, et al. Machine learning algorithm to construct cuproptosis- and immune-related prognosis prediction model for colon cancer. World J Gastrointest Oncol. 2023;15(3):372-88.
Kourou K, Exarchos TP, Exarchos KP, Karamouzis MV, Fotiadis DI. Machine learning applications in cancer prognosis and prediction. Comput Struct Biotechnol J. 2015;13:8-17.
Liu YS, Thaliffdeen R, Han S, Park C. Use of machine learning to predict bladder cancer survival outcomes: a systematic literature review. Expert Rev Pharmacoecon Outcomes Res. 2023;23(7):761-71.
McCarthy JF, Marx KA, Hoffman PE, Gee AG, O'Neil P, Ujwal ML, et al. Applications of machine learning and high-dimensional visualization in cancer detection, diagnosis, and management. Ann N Y Acad Sci. 2004;1020:239-62.
Mösch A, Raffegerst S, Weis M, Schendel DJ, Frishman D. Machine Learning for Cancer Immunotherapies Based on Epitope Recognition by T Cell Receptors. Front Genet. 2019;10:1141.
Torkamannia A, Omidi Y, Ferdousi R. A review of machine learning approaches for drug synergy prediction in cancer. Brief Bioinform. 2022;23(3).
Zhang H, Lin C, Chen Y, Shen X, Wang R, Chen Y, et al. Enhancing Molecular Network-Based Cancer Driver Gene Prediction Using Machine Learning Approaches: Current Challenges and Opportunities. J Cell Mol Med. 2025;29(1):e70351.
Rahmani E, Farrokhi M, Aghajan A, Gholampour G, Ghoodjani E, Shemshadigolafzani R, et al. AI-Driven Strategies for Improving Patient Quality of Life. Kindle. 2025;5(1):1-214.
Javadzadeh A, Shafiei D, Amlash RS, Mehrvar R, Sepehrian S, Shafiee A, et al. The Brain-Body Connection: Neuroscience’s Role Across Medical Sciences Disciplines. Kindle. 2025;5(1):1-210.
Harati K, Mosaddeghi-Heris R, Kiani K, Saligheh Rad M, Morovatshoar R, Kamali M, et al. The AI Revolution: Predicting and Managing the Next Global Health Challenges and Emerging Disease Outbreaks. Kindle. 2025;5(1):1-326.
Farrokhi M, Ghalamkarpour N, Nouri S, Babaei M, Rajabloo Y, Sattari M, et al. Innovative Vaccination: A New Era in Cancer Prevention. Kindle. 2025;5(1):1-194.
Babaheidarian P, Soltanattar A, Sajadi SK, Rostamian L, Foroutani L, Soleymanpourshamsi T, et al. Robotics in Healthcare. Kindle. 2025;5(1):1-178.
Downloads
Published
How to Cite
Issue
Section
Categories
License
Since making research freely available supports a greater global exchange of knowledge, PreferPub provides immediate open access to its published books under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (CC BY-NC 4.0). This license allows others to share, copy, and redistribute the material in any medium or format, as well as adapt, remix, transform, and build upon the material, as long as the use is non-commercial and appropriate credit is given to the original work.