Clinical Decision-Making Using Artificial Intelligence

Authors

  • Mehrdad Farrokhi
  • Saba Mehrtabar
  • Khadijeh Harati
  • Tannaz Pourlak
  • Erfan Ghadirzadeh
  • Horrieh Abbasmofrad
  • Reza Zahedpasha
  • Peyman Bashghareh
  • Kiana Bahmanipour
  • Melika Hemmati
  • Sepideh Amin Afshari
  • Marjan Lashgari
  • Masih Kavian
  • Zahra Tajik
  • Amirali Mohammadi
  • Mohammad Mehdi Karimi Kenari
  • Hamid Askari
  • Ali Amiri
  • Artin Rahimi
  • Siavash Ketabi
  • Kamyab Komaee Koma
  • Kiana Nouri
  • Reyhaneh Mehrvar
  • Naeimeh Hosseini
  • Javaneh Atighi
  • Maryam Haghani
  • Zahra Naseh
  • Sheida Akhlaghitehrani
  • Zohreh Kourehpaz Hassanalizad
  • Roozbeh Roohinezhad
  • Somayeh Hashemi Ali Abadi
  • Seyed Amirali Zakavi
  • Mahdi Javadian
  • Mohammad Ali Daliri Ojghaz
  • Mohammad Alinezhad Taheri
  • Zahra Hamzehnejadi
  • Eros Cribello
  • Sayed Mohammadamin Tabatabaei
  • Masoud Seifi
  • Niloofar Taheri
  • Omid Fakharzadeh Moghadam
  • Sanaz Amiri Marbini
  • Saman Abdollahpour
  • Kameliya Sanjabiyan

Keywords:

Clinical Decision-Making, Artificial Intelligence, Deep Learning, Machine Learning

Abstract

Clinical decision-making using artificial intelligence represents a significant evolution in modern healthcare. Traditionally, clinical decisions have relied on physician experience, clinical guidelines, and manual interpretation of diagnostic data. As medical data have grown in volume and complexity, artificial intelligence has emerged as a valuable tool to support clinicians in synthesizing information and reducing uncertainty. Artificial intelligence systems analyze large and diverse datasets, including electronic health records, medical imaging, laboratory results, physiologic signals, and clinical text. Through machine learning and deep learning techniques, these systems identify patterns that may not be easily recognized by humans. This capability supports earlier diagnosis, more accurate risk stratification, and personalized treatment planning. In time sensitive settings, artificial intelligence can assist in prioritizing patients, predicting deterioration, and supporting rapid interventions. Importantly, artificial intelligence functions as a clinical decision support tool rather than a replacement for clinician judgment. Human oversight remains essential to interpret outputs, account for patient preferences, and manage ethical considerations. Well designed artificial intelligence systems are integrated into clinical workflows, providing recommendations that are transparent, interpretable, and actionable. Despite its promise, the use of artificial intelligence in clinical decision-making presents challenges. These include data quality, algorithmic bias, generalizability across populations, and concerns about privacy and accountability. Addressing these issues requires rigorous validation, ongoing monitoring, and clear governance frameworks. When implemented responsibly, artificial intelligence enhances clinical decision-making by improving consistency, efficiency, and precision. Its thoughtful integration has the potential to support clinicians, improve patient outcomes, and contribute to a more adaptive and data driven healthcare system.

References

Abdalrahman Mohammad Ali MO, Abdelgadir Elhabeeb SM, Abdalla Elsheikh NE, Abdalla Mohammed FS, Mahmoud Ali SH, Ibrahim Abdelhalim AA, et al. Advancing Obstetric Care Through Artificial Intelligence-Enhanced Clinical Decision Support Systems: A Systematic Review. Cureus. 2025;17(3):e80514.

Akay EMZ, Hilbert A, Carlisle BG, Madai VI, Mutke MA, Frey D. Artificial Intelligence for Clinical Decision Support in Acute Ischemic Stroke: A Systematic Review. Stroke. 2023;54(6):1505-16.

Al-Namankany A. Influence of Artificial Intelligence-Driven Diagnostic Tools on Treatment Decision-Making in Early Childhood Caries: A Systematic Review of Accuracy and Clinical Outcomes. Dent J (Basel). 2023;11(9).

Alnattah A, Jajroudi M, Fadafen SAN, Manzari MN, Eslami S. Artificial Intelligence in Clinical Decision-Making: A Scoping Review of Rule-Based Systems and Their Applications in Medicine. Cureus. 2025;17(8):e91333.

Alqadi MM, Vidal SGM. Artificial Intelligence in Vascular Neurology: Applications, Challenges, and a Review of AI Tools for Stroke Imaging, Clinical Decision Making, and Outcome Prediction Models. Curr Neurol Neurosci Rep. 2025;25(1):34.

Ardic N, Dinc R. Emerging trends in multi-modal artificial intelligence for clinical decision support: A narrative review. Health Informatics J. 2025;31(3):14604582251366141.

Bektaş M, Tan C, Burchell GL, Daams F, van der Peet DL. Artificial intelligence-powered clinical decision making within gastrointestinal surgery: A systematic review. Eur J Surg Oncol. 2025;51(1):108385.

Benzekry S. Artificial Intelligence and Mechanistic Modeling for Clinical Decision Making in Oncology. Clin Pharmacol Ther. 2020;108(3):471-86.

Benzinger L, Ursin F, Balke WT, Kacprowski T, Salloch S. Should Artificial Intelligence be used to support clinical ethical decision-making? A systematic review of reasons. BMC Med Ethics. 2023;24(1):48.

Bizzo BC, Almeida RR, Michalski MH, Alkasab TK. Artificial Intelligence and Clinical Decision Support for Radiologists and Referring Providers. J Am Coll Radiol. 2019;16(9 Pt B):1351-6.

Buchlak QD, Esmaili N, Leveque JC, Farrokhi F, Bennett C, Piccardi M, et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev. 2020;43(5):1235-53.

Bulletti C, Franasiak JM, Busnelli A, Sciorio R, Berrettini M, Aghajanova L, et al. Artificial Intelligence, Clinical Decision Support Algorithms, Mathematical Models, Calculators Applications in Infertility: Systematic Review and Hands-On Digital Applications. Mayo Clin Proc Digit Health. 2024;2(4):518-32.

Chen W, Dhawan M, Liu J, Ing D, Mehta K, Tran D, et al. Mapping the Use of Artificial Intelligence-Based Image Analysis for Clinical Decision-Making in Dentistry: A Scoping Review. Clin Exp Dent Res. 2024;10(6):e70035.

Chiang MA, Coll L, Pollo-Cattaneo MF, Chatterjee P. A Systematic Review on Artificial Intelligence-Based Clinical Decision Support Systems in Depression. Annu Int Conf IEEE Eng Med Biol Soc. 2025;2025:1-7.

Choi J. Artificial intelligence in surgery research: Successfully implementing AI clinical decision support models. J Trauma Acute Care Surg. 2025;99(4):518-21.

Christie JR, Lang P, Zelko LM, Palma DA, Abdelrazek M, Mattonen SA. Artificial Intelligence in Lung Cancer: Bridging the Gap Between Computational Power and Clinical Decision-Making. Can Assoc Radiol J. 2021;72(1):86-97.

Conley N. Artificial Intelligence in Diagnosis and Clinical Decision-Making. Prim Care. 2025;52(4):721-32.

Daley BJ, Ni'Man M, Neves MR, Bobby Huda MS, Marsh W, Fenton NE, et al. mHealth apps for gestational diabetes mellitus that provide clinical decision support or artificial intelligence: A scoping review. Diabet Med. 2022;39(1):e14735.

Desai P, Dobes A, Shah A, Abdulhay L, Peterson C, Ancker J, et al. Clinical Decision Support Innovation Collaborative (CDSiC) Reports. Trust and Patient-Centeredness Workgroup: Patient and Caregiver Perspectives on Generative Artificial Intelligence in Patient-Centered Clinical Decision Support. Rockville (MD): Agency for Healthcare Research and Quality (US); 2024.

Firuzpour F, Pasha AA, Oliaei F, Nasirimehr K, Khosravi M, Rostami G, et al. Artificial intelligence-driven kidney organ allocation: systematic review of clinical outcome prediction, ethical frameworks, and decision-making algorithms. BMC Nephrol. 2025;26(1):639.

Giordano C, Brennan M, Mohamed B, Rashidi P, Modave F, Tighe P. Accessing Artificial Intelligence for Clinical Decision-Making. Front Digit Health. 2021;3:645232.

Goldstein BA, Mohottige D, Bessias S, Cary MP, Jr. Enhancing Clinical Decision Support in Nephrology: Addressing Algorithmic Bias Through Artificial Intelligence Governance. Am J Kidney Dis. 2024;84(6):780-6.

Gomez-Cabello CA, Borna S, Pressman S, Haider SA, Haider CR, Forte AJ. Artificial-Intelligence-Based Clinical Decision Support Systems in Primary Care: A Scoping Review of Current Clinical Implementations. Eur J Investig Health Psychol Educ. 2024;14(3):685-98.

Graafsma J, Murphy RM, van de Garde EMW, Karapinar-Çarkit F, Derijks HJ, Hoge RHL, et al. The use of artificial intelligence to optimize medication alerts generated by clinical decision support systems: a scoping review. J Am Med Inform Assoc. 2024;31(6):1411-22.

Hassan N, Slight R, Weiand D, Vellinga A, Morgan G, Aboushareb F, et al. Preventing sepsis; how can artificial intelligence inform the clinical decision-making process? A systematic review. Int J Med Inform. 2021;150:104457.

Kareemi H, Li H, Rajaram A, Holodinsky JK, Hall JN, Grant L, et al. Establishing methodological standards for the development of artificial intelligence-based Clinical Decision Support in emergency medicine. Cjem. 2025;27(2):87-95.

Kareemi H, Yadav K, Price C, Bobrovitz N, Meehan A, Li H, et al. Artificial intelligence-based clinical decision support in the emergency department: A scoping review. Acad Emerg Med. 2025;32(4):386-95.

Karuppan Perumal MK, Rajan Renuka R, Kumar Subbiah S, Manickam Natarajan P. Artificial intelligence-driven clinical decision support systems for early detection and precision therapy in oral cancer: a mini review. Front Oral Health. 2025;6:1592428.

Khanagar SB, Al-Ehaideb A, Vishwanathaiah S, Maganur PC, Patil S, Naik S, et al. Scope and performance of artificial intelligence technology in orthodontic diagnosis, treatment planning, and clinical decision-making - A systematic review. J Dent Sci. 2021;16(1):482-92.

Kindle RD, Badawi O, Celi LA, Sturland S. Intensive Care Unit Telemedicine in the Era of Big Data, Artificial Intelligence, and Computer Clinical Decision Support Systems. Crit Care Clin. 2019;35(3):483-95.

Knop M, Weber S, Mueller M, Niehaves B. Human Factors and Technological Characteristics Influencing the Interaction of Medical Professionals With Artificial Intelligence-Enabled Clinical Decision Support Systems: Literature Review. JMIR Hum Factors. 2022;9(1):e28639.

Lee TH, Chen JJ, Cheng CT, Chang CH. Does Artificial Intelligence Make Clinical Decision Better? A Review of Artificial Intelligence and Machine Learning in Acute Kidney Injury Prediction. Healthcare (Basel). 2021;9(12).

León-Domínguez U. Towards an artificial intelligence clinical decision-support system based on immersive virtual reality for neurocognitive assessment. Ergonomics. 2025:1-18.

Li Y, Zhang T, Yang Y, Gao Y. Artificial intelligence-aided decision support in paediatrics clinical diagnosis: development and future prospects. J Int Med Res. 2020;48(9):300060520945141.

Liao X, Yao C, Zhang J, Liu LZ. Recent advancement in integrating artificial intelligence and information technology with real-world data for clinical decision-making in China: A scoping review. J Evid Based Med. 2023;16(4):534-46.

Lin X, Liang C, Liu J, Lyu T, Ghumman N, Campbell B. Artificial Intelligence-Augmented Clinical Decision Support Systems for Pregnancy Care: Systematic Review. J Med Internet Res. 2024;26:e54737.

Magrabi F, Ammenwerth E, McNair JB, De Keizer NF, Hyppönen H, Nykänen P, et al. Artificial Intelligence in Clinical Decision Support: Challenges for Evaluating AI and Practical Implications. Yearb Med Inform. 2019;28(1):128-34.

Mahadevaiah G, Rv P, Bermejo I, Jaffray D, Dekker A, Wee L. Artificial intelligence-based clinical decision support in modern medical physics: Selection, acceptance, commissioning, and quality assurance. Med Phys. 2020;47(5):e228-e35.

Mikkonen K, Tuunainen S, Oikarinen A, Jansson M, Woo B, Zhou W, et al. Artificial Intelligence Technologies Supporting Nurses' Clinical Decision-Making: A Systematic Review. J Clin Nurs. 2025.

Montani S, Striani M. Artificial Intelligence in Clinical Decision Support: a Focused Literature Survey. Yearb Med Inform. 2019;28(1):120-7.

Montomoli J, Hilty MP, Ince C. Artificial intelligence in intensive care: moving towards clinical decision support systems. Minerva Anestesiol. 2022;88(12):1066-72.

Naderian S, Soleimanzadeh F, Nikniaz L, Sanaie S, Sadeghi-Ghyassi F, Samad-Soltani T. A Systematic Review of Artificial Intelligence-Based Clinical Decision Support Systems in Prostate Cancer Management. Healthc Technol Lett. 2025;12(1):e70026.

Nimri R, Phillip M. Enhancing Care in Type 1 Diabetes with Artificial Intelligence Driven Clinical Decision Support Systems. Horm Res Paediatr. 2025;98(4):384-95.

Oei SP, Bakkes T, Mischi M, Bouwman RA, van Sloun RJG, Turco S. Artificial intelligence in clinical decision support and the prediction of adverse events. Front Digit Health. 2025;7:1403047.

Ogut E. Artificial Intelligence in Clinical Medicine: Challenges Across Diagnostic Imaging, Clinical Decision Support, Surgery, Pathology, and Drug Discovery. Clin Pract. 2025;15(9).

Ouanes K, Farhah N. Effectiveness of Artificial Intelligence (AI) in Clinical Decision Support Systems and Care Delivery. J Med Syst. 2024;48(1):74.

Parsons CS, Zuiderwijk A, Orchard NA, Oosterhoff JHF, de Reuver M. Task-Technology Fit of Artificial Intelligence-based clinical decision support systems: a review of qualitative studies. BMC Med Inform Decis Mak. 2025;25(1):397.

Patel M, Nanji KC. Artificial Intelligence in Perioperative Medication-Related Clinical Decision Support. Anesthesiol Clin. 2025;43(3):587-602.

Pedersen M, Verspoor K, Jenkinson M, Law M, Abbott DF, Jackson GD. Artificial intelligence for clinical decision support in neurology. Brain Commun. 2020;2(2):fcaa096.

Peek N, Capurro D, Rozova V, van der Veer SN. Bridging the Gap: Challenges and Strategies for the Implementation of Artificial Intelligence-based Clinical Decision Support Systems in Clinical Practice. Yearb Med Inform. 2024;33(1):103-14.

Ramgopal S, Sanchez-Pinto LN, Horvat CM, Carroll MS, Luo Y, Florin TA. Artificial intelligence-based clinical decision support in pediatrics. Pediatr Res. 2023;93(2):334-41.

Reicher L, Lutsker G, Michaan N, Grisaru D, Laskov I. Exploring the role of artificial intelligence, large language models: Comparing patient-focused information and clinical decision support capabilities to the gynecologic oncology guidelines. Int J Gynaecol Obstet. 2025;168(2):419-27.

Ren SQ, Chen JM, Cai C. Translational artificial intelligence in gastrointestinal and hepatic disorders: Advancing intelligent clinical decision-making for diagnosis, treatment, and prognosis. World J Gastroenterol. 2025;31(36):110742.

Ryan S, Heaney-Huls K, Kawamoto K, Lobach D, Desai PJ, CdsiC Implementation A, et al. Clinical Decision Support Innovation Collaborative (CDSiC) Reports. Artificial Intelligence-Supported Patient-Centered Clinical Decision Support: A Summary of Considerations. Rockville (MD): Agency for Healthcare Research and Quality (US); 2025.

Sáez C, Ferri P, García-Gómez JM. Resilient Artificial Intelligence in Health: Synthesis and Research Agenda Toward Next-Generation Trustworthy Clinical Decision Support. J Med Internet Res. 2024;26:e50295.

Safarian A, Mirshahvalad SA, Nasrollahi H, Jung T, Pirich C, Arabi H, et al. Impact of [(18)F]FDG PET/CT Radiomics and Artificial Intelligence in Clinical Decision Making in Lung Cancer: Its Current Role. Semin Nucl Med. 2025;55(2):156-66.

Seely AJE, Newman K, Ramchandani R, Herry C, Scales N, Hudek N, et al. Roadmap for the evolution of monitoring: developing and evaluating waveform-based variability-derived artificial intelligence-powered predictive clinical decision support software tools. Crit Care. 2024;28(1):404.

Semerci ZM, Yardımcı S. Empowering Modern Dentistry: The Impact of Artificial Intelligence on Patient Care and Clinical Decision Making. Diagnostics (Basel). 2024;14(12).

Sexton DJ, Judge C. Assessments of Generative Artificial Intelligence as Clinical Decision Support Ought to be Incorporated Into Randomized Controlled Trials of Electronic Alerts for Acute Kidney Injury. Mayo Clin Proc Digit Health. 2024;2(4):606-10.

Shaikh F, Dehmeshki J, Bisdas S, Roettger-Dupont D, Kubassova O, Aziz M, et al. Artificial Intelligence-Based Clinical Decision Support Systems Using Advanced Medical Imaging and Radiomics. Curr Probl Diagn Radiol. 2021;50(2):262-7.

Singla B, Afridi S, Vayolipoyil S, Ahmed T, Afzaal S, Saleem K, et al. The Evolving Role of Artificial Intelligence in Medical Science: Advancing Diagnostics, Clinical Decision-Making, and Research. Cureus. 2025;17(9):e91514.

Sokol K, Fackler J, Vogt JE. Artificial intelligence should genuinely support clinical reasoning and decision making to bridge the translational gap. NPJ Digit Med. 2025;8(1):345.

Sperti M, Cardaci C, Bruno F, Shah STH, Panagiotopoulos K, Kassem K, et al. Artificial Intelligence-based Approaches for Characterizing Plaque Components From Intravascular Optical Coherence Tomography Imaging: Integration Into Clinical Decision Support Systems. Rev Cardiovasc Med. 2025;26(7):39210.

Teoman AS, Serefoglu EC. Artificial Intelligence-Based Clinical Decision-Making in Erectile Dysfunction: a Narrative Review. Curr Urol Rep. 2024;26(1):22.

Tun HM, Rahman HA, Naing L, Malik OA. Trust in Artificial Intelligence-Based Clinical Decision Support Systems Among Health Care Workers: Systematic Review. J Med Internet Res. 2025;27:e69678.

van der Ven WH, Veelo DP, Wijnberge M, van der Ster BJP, Vlaar APJ, Geerts BF. One of the first validations of an artificial intelligence algorithm for clinical use: The impact on intraoperative hypotension prediction and clinical decision-making. Surgery. 2021;169(6):1300-3.

Vasey B, Nagendran M, Campbell B, Clifton DA, Collins GS, Denaxas S, et al. Reporting guideline for the early-stage clinical evaluation of decision support systems driven by artificial intelligence: DECIDE-AI. Nat Med. 2022;28(5):924-33.

Wang L, Chen X, Zhang L, Li L, Huang Y, Sun Y, et al. Artificial intelligence in clinical decision support systems for oncology. Int J Med Sci. 2023;20(1):79-86.

Weissman GE. Evaluation and Regulation of Artificial Intelligence Medical Devices for Clinical Decision Support. Annu Rev Biomed Data Sci. 2025;8(1):81-99.

Wu M, Du X, Gu R, Wei J. Artificial Intelligence for Clinical Decision Support in Sepsis. Front Med (Lausanne). 2021;8:665464.

Xu Q, Xie W, Liao B, Hu C, Qin L, Yang Z, et al. Interpretability of Clinical Decision Support Systems Based on Artificial Intelligence from Technological and Medical Perspective: A Systematic Review. J Healthc Eng. 2023;2023:9919269.

Yan D, Zheng Q, Chang K, Hua R, Liu Y, Xue J, et al. Artificial intelligence in traditional Chinese medicine: from systems biological mechanism discovery, real-world clinical evidence inference to personalized clinical decision support. Chin J Nat Med. 2025;23(11):1310-28.

Yeo M, Kok HK, Kutaiba N, Maingard J, Thijs V, Tahayori B, et al. Artificial intelligence in clinical decision support and outcome prediction - applications in stroke. J Med Imaging Radiat Oncol. 2021.

Zeng J, Shufean MA. Molecular-based precision oncology clinical decision making augmented by artificial intelligence. Emerg Top Life Sci. 2021;5(6):757-64.

Zhang C, Lam BD, Lucas F, Foy BH. Machine Learning and Artificial Intelligence-Based Clinical Decision Support for Modern Hematology. Clin Lab Med. 2025;45(4):691-705.

Abbasgholizadeh Rahimi S, Cwintal M, Huang Y, Ghadiri P, Grad R, Poenaru D, et al. Application of Artificial Intelligence in Shared Decision Making: Scoping Review. JMIR Med Inform. 2022;10(8):e36199.

Abdekhoda M, Madiseh FR. Artificial Intelligence Applications in Decision-Making for Disease Management: A scoping review. Sultan Qaboos Univ Med J. 2025;25(1):441-9.

Ajmal CS, Yerram S, Abishek V, Nizam VPM, Aglave G, Patnam JD, et al. Innovative Approaches in Regulatory Affairs: Leveraging Artificial Intelligence and Machine Learning for Efficient Compliance and Decision-Making. Aaps j. 2025;27(1):22.

Al Fryan LH, Shomo MI, Alazzam MB, Rahman MA. Processing Decision Tree Data Using Internet of Things (IoT) and Artificial Intelligence Technologies with Special Reference to Medical Application. Biomed Res Int. 2022;2022:8626234.

Alenezi AM. Artificial Intelligence in Breast Cancer Diagnosis and Surgical Decision-Making: An Updated and Comprehensive Overview of Precision and Personalization in Current Evidence. Cancer Manag Res. 2025;17:2261-75.

Authors, Xie W, Butcher R. CADTH Horizon Scans. Artificial Intelligence Decision Support Tools for End-of-Life Care Planning Conversations: CADTH Horizon Scan. Ottawa (ON): Canadian Agency for Drugs and Technologies in Health; 2023.

Birla M, Rajan, Roy PG, Gupta I, Malik PS. Integrating Artificial Intelligence-Driven Wearable Technology in Oncology Decision-Making: A Narrative Review. Oncology. 2025;103(1):69-82.

Bivard A, Churilov L, Parsons M. Artificial intelligence for decision support in acute stroke - current roles and potential. Nat Rev Neurol. 2020;16(10):575-85.

Boreak N. Effectiveness of Artificial Intelligence Applications Designed for Endodontic Diagnosis, Decision-making, and Prediction of Prognosis: A Systematic Review. J Contemp Dent Pract. 2020;21(8):926-34.

Byerly S, Maurer LR, Mantero A, Naar L, An G, Kaafarani HMA. Machine Learning and Artificial Intelligence for Surgical Decision Making. Surg Infect (Larchmt). 2021;22(6):626-34.

Caruso PF, Greco M, Ebm C, Angelotti G, Cecconi M. Implementing Artificial Intelligence: Assessing the Cost and Benefits of Algorithmic Decision-Making in Critical Care. Crit Care Clin. 2023;39(4):783-93.

Černevičienė J, Kabašinskas A. Review of Multi-Criteria Decision-Making Methods in Finance Using Explainable Artificial Intelligence. Front Artif Intell. 2022;5:827584.

Coelho H, Silva F, Correia M, Rodrigues PM. Artificial Intelligence in Patient Blood Management: A Systematic Review of Predictive, Diagnostic, and Decision Support Applications. J Clin Med. 2025;14(23).

Conte L, Decembrino N, Arribas C, Cucci F, De Nunzio G, Amodeo I, et al. Leveraging Artificial Intelligence for decision support in neonatal and pediatric pharmacotherapy: A scoping review. Semin Fetal Neonatal Med. 2025:101691.

Contreras I, Vehi J. Artificial Intelligence for Diabetes Management and Decision Support: Literature Review. J Med Internet Res. 2018;20(5):e10775.

Cresswell K, Callaghan M, Khan S, Sheikh Z, Mozaffar H, Sheikh A. Investigating the use of data-driven artificial intelligence in computerised decision support systems for health and social care: A systematic review. Health Informatics J. 2020;26(3):2138-47.

Di Palma G, Scendoni R, De Benedictis A, Tambone V, De Micco F. Leveraging artificial intelligence for collaborative care planning: Innovations and impacts in shared decision-making - A systematic review. Open Med (Wars). 2025;20(1):20251232.

Ding Z, Fang W, Zhang J, Fang C, Sun Y. Artificial intelligence in wearable biosensing: Enhancing data analysis and decision-making. Prog Mol Biol Transl Sci. 2025;216:1-26.

Dunn N, Verma N, Dunn W. Artificial Intelligence for Predictive Diagnostics, Prognosis, and Decision Support in MASLD, Hepatocellular Carcinoma, and Digital Pathology. J Clin Exp Hepatol. 2026;16(1):103184.

Duran HT, Kingeter M, Reale C, Weinger MB, Salwei ME. Decision-making in anesthesiology: will artificial intelligence make intraoperative care safer? Curr Opin Anaesthesiol. 2023;36(6):691-7.

Egger K, Rijntjes M. [Big data and artificial intelligence for diagnostic decision support in atypical dementia]. Nervenarzt. 2018;89(8):875-84.

El-Kareh R, Sittig DF. Enhancing Diagnosis Through Technology: Decision Support, Artificial Intelligence, and Beyond. Crit Care Clin. 2022;38(1):129-39.

Evangelista K, de Freitas Silva BS, Yamamoto-Silva FP, Valladares-Neto J, Silva MAG, Cevidanes LHS, et al. Accuracy of artificial intelligence for tooth extraction decision-making in orthodontics: a systematic review and meta-analysis. Clin Oral Investig. 2022;26(12):6893-905.

Fast NJ, Schroeder J. Power and decision making: new directions for research in the age of artificial intelligence. Curr Opin Psychol. 2020;33:172-6.

Fawaz A, Ferraresi A, Isidoro C. Systems Biology in Cancer Diagnosis Integrating Omics Technologies and Artificial Intelligence to Support Physician Decision Making. J Pers Med. 2023;13(11).

Froicu EM, Creangă-Murariu I, Afrăsânie VA, Gafton B, Alexa-Stratulat T, Miron L, et al. Artificial Intelligence and Decision-Making in Oncology: A Review of Ethical, Legal, and Informed Consent Challenges. Curr Oncol Rep. 2025;27(8):1002-12.

Giaccone P, D'Antoni F, Russo F, Ambrosio L, Papalia GF, d'Angelis O, et al. Prevention and management of degenerative lumbar spine disorders through artificial intelligence-based decision support systems: a systematic review. BMC Musculoskelet Disord. 2025;26(1):126.

Giacobbe DR, Vena A, Bassetti M. Role of artificial intelligence in ICU therapeutic decision-making for severe infections. Curr Opin Crit Care. 2025;31(5):547-53.

Gupta P, Pearce AK, Pham T, Miller M, Brunetti K, Heskett K, et al. Artificial intelligence-driven decision support for patients with acute respiratory failure: a scoping review. Intensive Care Med Exp. 2025;13(1):83.

Gurupur V, Wan TTH. Inherent Bias in Artificial Intelligence-Based Decision Support Systems for Healthcare. Medicina (Kaunas). 2020;56(3).

Higgins O, Short BL, Chalup SK, Wilson RL. Artificial intelligence (AI) and machine learning (ML) based decision support systems in mental health: An integrative review. Int J Ment Health Nurs. 2023;32(4):966-78.

Higgins O, Wilson RL. Integrating Artificial Intelligence (AI) With Workforce Solutions for Sustainable Care: A Follow Up to Artificial Intelligence and Machine Learning (ML) Based Decision Support Systems in Mental Health. Int J Ment Health Nurs. 2025;34(2):e70019.

Holz FG, Abreu-Gonzalez R, Bandello F, Duval R, O'Toole L, Pauleikhoff D, et al. Does real-time artificial intelligence-based visual pathology enhancement of three-dimensional optical coherence tomography scans optimise treatment decision in patients with nAMD? Rationale and design of the RAZORBILL study. Br J Ophthalmol. 2023;107(1):96-101.

Hu M, Wang Y, Liu Y, Cai B, Kong F, Zheng Q, et al. Artificial Intelligence in Nursing Decision-Making: A Bibliometric Analysis of Trends and Impacts. Nurs Rep. 2025;15(6).

Kahn CE, Jr. Artificial intelligence in radiology: decision support systems. Radiographics. 1994;14(4):849-61.

Khosravi M, Zare Z, Mojtabaeian SM, Izadi R. Artificial Intelligence and Decision-Making in Healthcare: A Thematic Analysis of a Systematic Review of Reviews. Health Serv Res Manag Epidemiol. 2024;11:23333928241234863.

Kumar AA, Vasudevan C. Artificial intelligence for medical decision making. J Assoc Physicians India. 1990;38(7):475-8.

Lareyre F, Yeung KK, Guzzi L, Di Lorenzo G, Chaudhuri A, Behrendt CA, et al. Artificial intelligence in vascular surgical decision making. Semin Vasc Surg. 2023;36(3):448-53.

Li J, Wu J, Zhao Z, Zhang Q, Shao J, Wang C, et al. Artificial intelligence-assisted decision making for prognosis and drug efficacy prediction in lung cancer patients: a narrative review. J Thorac Dis. 2021;13(12):7021-33.

Li Y, Chen D, Wu X, Yang W, Chen Y. A narrative review of artificial intelligence-assisted histopathologic diagnosis and decision-making for non-small cell lung cancer: achievements and limitations. J Thorac Dis. 2021;13(12):7006-20.

Loftus TJ, Shickel B, Ozrazgat-Baslanti T, Ren Y, Glicksberg BS, Cao J, et al. Artificial intelligence-enabled decision support in nephrology. Nat Rev Nephrol. 2022;18(7):452-65.

Loftus TJ, Tighe PJ, Filiberto AC, Efron PA, Brakenridge SC, Mohr AM, et al. Artificial Intelligence and Surgical Decision-making. JAMA Surg. 2020;155(2):148-58.

Loushy I, Sperling MR. Artificial intelligence for epilepsy decision support. Epilepsia. 2025.

Lynn LA. Artificial intelligence systems for complex decision-making in acute care medicine: a review. Patient Saf Surg. 2019;13:6.

Manava P, Galster M, Heinen H, Stebner A, Lell M. [Artificial intelligence-based algorithms : Decision-making support for computed tomography of the chest]. Radiologe. 2020;60(10):952-8.

Marques M, Almeida A, Pereira H. The Medicine Revolution Through Artificial Intelligence: Ethical Challenges of Machine Learning Algorithms in Decision-Making. Cureus. 2024;16(9):e69405.

Massalha S, Clarkin O, Thornhill R, Wells G, Chow BJW. Decision Support Tools, Systems, and Artificial Intelligence in Cardiac Imaging. Can J Cardiol. 2018;34(7):827-38.

McNair D. Artificial Intelligence and Machine Learning for Lead-to-Candidate Decision-Making and Beyond. Annu Rev Pharmacol Toxicol. 2023;63:77-97.

Navarrete-Welton AJ, Hashimoto DA. Current applications of artificial intelligence for intraoperative decision support in surgery. Front Med. 2020;14(4):369-81.

Nzeako TR, Elendu C, Echefu G, Olanisa O, Kiladejo A, Bob-Manuel ED. Artificial intelligence in interventional cardiology: a review of its role in diagnosis, decision-making, and procedural precision. Ann Med Surg (Lond). 2025;87(9):5720-34.

Oehring R, Ramasetti N, Ng S, Roller R, Thomas P, Winter A, et al. Use and accuracy of decision support systems using artificial intelligence for tumor diseases: a systematic review and meta-analysis. Front Oncol. 2023;13:1224347.

Orzan F, Iancu Ş D, Dioşan L, Bálint Z. Textural analysis and artificial intelligence as decision support tools in the diagnosis of multiple sclerosis - a systematic review. Front Neurosci. 2024;18:1457420.

Pinton P. Impact of artificial intelligence on prognosis, shared decision-making, and precision medicine for patients with inflammatory bowel disease: a perspective and expert opinion. Ann Med. 2023;55(2):2300670.

Pozza A, Zanella L, Castaldi B, Di Salvo G. How Will Artificial Intelligence Shape the Future of Decision-Making in Congenital Heart Disease? J Clin Med. 2024;13(10).

Rasheed J, Jamil A, Hameed AA, Aftab U, Aftab J, Shah SA, et al. A survey on artificial intelligence approaches in supporting frontline workers and decision makers for the COVID-19 pandemic. Chaos Solitons Fractals. 2020;141:110337.

Reifs Jiménez D, Casanova-Lozano L, Grau-Carrión S, Reig-Bolaño R. Artificial Intelligence Methods for Diagnostic and Decision-Making Assistance in Chronic Wounds: A Systematic Review. J Med Syst. 2025;49(1):29.

Ruiz NI, Cardona Salazar I, Naranjo Palacio LX, Agudelo Agudelo C, Ledesma Parra AM, Flores Rodriguez JC. Accuracy and Reliability of Artificial Intelligence in Surgical Decision-Making: A Literature Review. Cureus. 2025;17(10):e95337.

Saravi B, Hassel F, Ülkümen S, Zink A, Shavlokhova V, Couillard-Despres S, et al. Artificial Intelligence-Driven Prediction Modeling and Decision Making in Spine Surgery Using Hybrid Machine Learning Models. J Pers Med. 2022;12(4).

Sardar P, Abbott JD, Kundu A, Aronow HD, Granada JF, Giri J. Impact of Artificial Intelligence on Interventional Cardiology: From Decision-Making Aid to Advanced Interventional Procedure Assistance. JACC Cardiovasc Interv. 2019;12(14):1293-303.

Sellin J, Pantel JT, Börsch N, Conrad R, Mücke M. [Short paths to diagnosis with artificial intelligence: systematic literature review on diagnostic decision support systems]. Schmerz. 2024;38(1):19-27.

Senghor AS, Bright TJ, Kakim S, Norris KC, Antwi HA, Cooper JK, et al. A community-based approach to ethical decision-making in artificial intelligence for health care. JAMIA Open. 2025;8(4):ooaf076.

Sengul T, Sariköse S, Gul A. Ethical decision-making and artificial intelligence in nursing education: An integrative review. Nurs Ethics. 2025;32(8):2490-515.

Shah SP, Heiss JD. Artificial Intelligence as A Complementary Tool for Clincal Decision-Making in Stroke and Epilepsy. Brain Sci. 2024;14(3).

Taber P, Armin JS, Orozco G, Del Fiol G, Erdrich J, Kawamoto K, et al. Artificial Intelligence and Cancer Control: Toward Prioritizing Justice, Equity, Diversity, and Inclusion (JEDI) in Emerging Decision Support Technologies. Curr Oncol Rep. 2023;25(5):387-424.

Telecan T, Andras I, Crisan N, Giurgiu L, Căta ED, Caraiani C, et al. More than Meets the Eye: Using Textural Analysis and Artificial Intelligence as Decision Support Tools in Prostate Cancer Diagnosis-A Systematic Review. J Pers Med. 2022;12(6).

Threlkeld R, Ashiku L, Canfield C, Shank DB, Schnitzler MA, Lentine KL, et al. Reducing Kidney Discard With Artificial Intelligence Decision Support: the Need for a Transdisciplinary Systems Approach. Curr Transplant Rep. 2021;8(4):263-71.

Toffaha KM, Simsekler MCE, Omar MA. Leveraging artificial intelligence and decision support systems in hospital-acquired pressure injuries prediction: A comprehensive review. Artif Intell Med. 2023;141:102560.

Tyler NS, Jacobs PG. Artificial Intelligence in Decision Support Systems for Type 1 Diabetes. Sensors (Basel). 2020;20(11).

Zarkowsky DS, Stonko DP. Artificial intelligence's role in vascular surgery decision-making. Semin Vasc Surg. 2021;34(4):260-7.

Aamir A, Jamil Y, Bilal M, Diwan M, Nashwan AJ, Ullah I. Artificial Intelligence in Enhancing Syncope Management - An Update. Curr Probl Cardiol. 2024;49(1 Pt B):102079.

Abosamak MF, Zaki HA, Shaban EE, Shaban A, Shaban A, Hodhod H, et al. Artificial intelligence in airway management: A systematic review and meta-analysis. Anaesth Crit Care Pain Med. 2025;44(6):101589.

Acharya S, Godhi BS, Saxena V, Assiry AA, Alessa NA, Dawasaz AA, et al. Role of artificial intelligence in behavior management of pediatric dental patients-a mini review. J Clin Pediatr Dent. 2024;48(3):24-30.

Al-Absi DT, Simsekler MCE, Omar MA, Anwar S. Exploring the role of Artificial Intelligence in Acute Kidney Injury management: a comprehensive review and future research agenda. BMC Med Inform Decis Mak. 2024;24(1):337.

Alghalyini B. Applications of artificial intelligence in the management of childhood obesity. J Family Med Prim Care. 2023;12(11):2558-64.

Alsaleh H. The impact of artificial intelligence in the diagnosis and management of acoustic neuroma: A systematic review. Technol Health Care. 2024;32(6):3801-13.

Anastasiadis A, Koudonas A, Langas G, Tsiakaras S, Memmos D, Mykoniatis I, et al. Transforming urinary stone disease management by artificial intelligence-based methods: A comprehensive review. Asian J Urol. 2023;10(3):258-74.

Andeobu L, Wibowo S, Grandhi S. Artificial intelligence applications for sustainable solid waste management practices in Australia: A systematic review. Sci Total Environ. 2022;834:155389.

Angthong C, Rungrattanawilai N, Pundee C. Artificial intelligence assistance in deciding management strategies for polytrauma and trauma patients. Pol Przegl Chir. 2023;96(0):114-7.

Ansari A, Ansari N, Khalid U, Markov D, Bechev K, Aleksiev V, et al. The Role of Artificial Intelligence in the Diagnosis and Management of Diabetic Retinopathy. J Clin Med. 2025;14(14).

Aqel S, Syaj S, Al-Bzour A, Abuzanouneh F, Al-Bzour N, Ahmad J. Artificial Intelligence and Machine Learning Applications in Sudden Cardiac Arrest Prediction and Management: A Comprehensive Review. Curr Cardiol Rep. 2023;25(11):1391-6.

Armoundas AA, Ahmad FS, Attia ZI, Doudesis D, Khera R, Kyriakoulis KG, et al. Controversy in Hypertension: Pro-Side of the Argument Using Artificial Intelligence for Hypertension Diagnosis and Management. Hypertension. 2025;82(6):929-44.

Ather S, Kadir T, Gleeson F. Artificial intelligence and radiomics in pulmonary nodule management: current status and future applications. Clin Radiol. 2020;75(1):13-9.

Azmi S, Kunnathodi F, Alotaibi HF, Alhazzani W, Mustafa M, Ahmad I, et al. Harnessing Artificial Intelligence in Obesity Research and Management: A Comprehensive Review. Diagnostics (Basel). 2025;15(3).

Balasubramanian A, Bhambhvani H, Lee J, Shah O. Artificial Intelligence and Machine Learning for Stone Management. Urol Clin North Am. 2025;52(3):465-74.

Balgude SD, Gite S, Pradhan B, Lee CW. Artificial intelligence and machine learning approaches in cerebral palsy diagnosis, prognosis, and management: a comprehensive review. PeerJ Comput Sci. 2024;10:e2505.

Barbieri D, Giuliani E, Del Prete A, Losi A, Villani M, Barbieri A. How Artificial Intelligence and New Technologies Can Help the Management of the COVID-19 Pandemic. Int J Environ Res Public Health. 2021;18(14).

Baskar G, Nashath Omer S, Saravanan P, Rajeshkannan R, Saravanan V, Rajasimman M, et al. Status and future trends in wastewater management strategies using artificial intelligence and machine learning techniques. Chemosphere. 2024;362:142477.

Batalha M, Pais DAM, Almeida RAE, Martinho  SG. A Review of Artificial Intelligence and Machine Learning in Product Life Cycle Management. PDA J Pharm Sci Technol. 2024;78(5):604-12.

Battistelli M, Izzo A, D'Ercole M, D'Alessandris QG, Montano N. The role of artificial intelligence in the management of trigeminal neuralgia. Front Surg. 2023;10:1310414.

Beard K, Pennington AM, Gauff AK, Mitchell K, Smith J, Marion DW. Potential Applications and Ethical Considerations for Artificial Intelligence in Traumatic Brain Injury Management. Biomedicines. 2024;12(11).

Bellini V, Russo M, Domenichetti T, Panizzi M, Allai S, Bignami EG. Artificial Intelligence in Operating Room Management. J Med Syst. 2024;48(1):19.

Bernardi S, Vallati M, Gatta R. Artificial Intelligence-Based Management of Adult Chronic Myeloid Leukemia: Where Are We and Where Are We Going? Cancers (Basel). 2024;16(5).

Bhala N, Shah VH. Artificial Intelligence, Large Language Models, and Digital Health in the Management of Alcohol-Associated Liver Disease. Clin Liver Dis. 2024;28(4):819-30.

Bhatt SP, Khurana A. Artificial intelligence in obstructive sleep apnea: Transforming diagnosis and management. Respir Med. 2025;243:108100.

Bonci EA, Bandura A, Dooley A, Erjan A, Gebreslase HW, Hategan M, et al. Artificial intelligence in NSCLC management for revolutionizing diagnosis, prognosis, and treatment optimization: A systematic review. Crit Rev Oncol Hematol. 2025;216:104929.

Broome DT, Hilton CB, Mehta N. Policy Implications of Artificial Intelligence and Machine Learning in Diabetes Management. Curr Diab Rep. 2020;20(2):5.

Bush N, Khashab M, Akshintala VS. Current and Emerging Applications of Artificial Intelligence (AI) in the Management of Pancreatobiliary (PB) disorders. Curr Gastroenterol Rep. 2024;26(11):304-9.

Butova X, Shayakhmetov S, Fedin M, Zolotukhin I, Gianesini S. Artificial Intelligence Evidence-Based Current Status and Potential for Lower Limb Vascular Management. J Pers Med. 2021;11(12).

Caballero Mateos AM, Cañadas de la Fuente GA, Gros B. Paradigm Shift in Inflammatory Bowel Disease Management: Precision Medicine, Artificial Intelligence, and Emerging Therapies. J Clin Med. 2025;14(5).

Cai S, Han IC, Scott AW. Artificial intelligence for improving sickle cell retinopathy diagnosis and management. Eye (Lond). 2021;35(10):2675-84.

Calderaro J, Seraphin TP, Luedde T, Simon TG. Artificial intelligence for the prevention and clinical management of hepatocellular carcinoma. J Hepatol. 2022;76(6):1348-61.

Calderaro J, Žigutytė L, Truhn D, Jaffe A, Kather JN. Artificial intelligence in liver cancer - new tools for research and patient management. Nat Rev Gastroenterol Hepatol. 2024;21(8):585-99.

Campbell CG, Ting DSW, Keane PA, Foster PJ. The potential application of artificial intelligence for diagnosis and management of glaucoma in adults. Br Med Bull. 2020;134(1):21-33.

Cao F, Yang Y, Guo C, Zhang H, Yu Q, Guo J. Advancements in artificial intelligence for atopic dermatitis: diagnosis, treatment, and patient management. Ann Med. 2025;57(1):2484665.

Cao Y, Wang Y, Liu H, Wu L. Artificial intelligence revolutionizing anesthesia management: advances and prospects in intelligent anesthesia technology. Front Med (Lausanne). 2025;12:1571725.

Cappuccio M, Bianco P, Rotondo M, Spiezia S, D'Ambrosio M, Menegon Tasselli F, et al. Current use of artificial intelligence in the diagnosis and management of acute appendicitis. Minerva Surg. 2024;79(3):326-38.

Cerda IH, Zhang E, Dominguez M, Ahmed M, Lang M, Ashina S, et al. Artificial Intelligence and Virtual Reality in Headache Disorder Diagnosis, Classification, and Management. Curr Pain Headache Rep. 2024;28(9):869-80.

Cetera GE, Tozzi AE, Chiappa V, Castiglioni I, Merli CEM, Vercellini P. Artificial Intelligence in the Management of Women with Endometriosis and Adenomyosis: Can Machines Ever Be Worse Than Humans? J Clin Med. 2024;13(10).

Chander S, Kumari R, Sadarat F, Luhana S. The Evolution and Future of Intensive Care Management in the Era of Telecritical Care and Artificial Intelligence. Curr Probl Cardiol. 2023;48(10):101805.

Chandrabhatla AS, Kuo EA, Sokolowski JD, Kellogg RT, Park M, Mastorakos P. Artificial Intelligence and Machine Learning in the Diagnosis and Management of Stroke: A Narrative Review of United States Food and Drug Administration-Approved Technologies. J Clin Med. 2023;12(11).

Chen Y, Ou Z, Zhou D, Wu X. Advancements and Challenges of Artificial Intelligence-Assisted Electroencephalography in Epilepsy Management. J Clin Med. 2025;14(12).

Christou CD, Tsoulfas G. Role of three-dimensional printing and artificial intelligence in the management of hepatocellular carcinoma: Challenges and opportunities. World J Gastrointest Oncol. 2022;14(4):765-93.

Chu TN, Wong EY, Ma R, Yang CH, Dalieh IS, Hung AJ. Exploring the Use of Artificial Intelligence in the Management of Prostate Cancer. Curr Urol Rep. 2023;24(5):231-40.

Chumbita M, Cillóniz C, Puerta-Alcalde P, Moreno-García E, Sanjuan G, Garcia-Pouton N, et al. Can Artificial Intelligence Improve the Management of Pneumonia. J Clin Med. 2020;9(1).

Cinteza E, Vasile CM, Busnatu S, Armat I, Spinu AD, Vatasescu R, et al. Can Artificial Intelligence Revolutionize the Diagnosis and Management of the Atrial Septal Defect in Children? Diagnostics (Basel). 2024;14(2).

Condello I, Santarpino G, Nasso G, Moscarelli M, Fiore F, Speziale G. Management algorithms and artificial intelligence systems for cardiopulmonary bypass. Perfusion. 2022;37(8):765-72.

Conley N. Artificial Intelligence in Patient Management. Prim Care. 2025;52(4):733-44.

Dabas M, Schwartz D, Beeckman D, Gefen A. Application of Artificial Intelligence Methodologies to Chronic Wound Care and Management: A Scoping Review. Adv Wound Care (New Rochelle). 2023;12(4):205-40.

Damiani G, Altamura G, Zedda M, Nurchis MC, Aulino G, Heidar Alizadeh A, et al. Potentiality of algorithms and artificial intelligence adoption to improve medication management in primary care: a systematic review. BMJ Open. 2023;13(3):e065301.

Davergne T, Kedra J, Gossec L. Wearable activity trackers and artificial intelligence in the management of rheumatic diseases : Where are we in 2021? Z Rheumatol. 2021;80(10):928-35.

De Deo D, Dal Buono A, Gabbiadini R, Nardone OM, Ferreiro-Iglesias R, Privitera G, et al. Digital biomarkers and artificial intelligence: a new frontier in personalized management of inflammatory bowel disease. Front Immunol. 2025;16:1637159.

De Rosa S, Bignami E, Bellini V, Battaglini D. The Future of Artificial Intelligence Using Images and Clinical Assessment for Difficult Airway Management. Anesth Analg. 2025;140(2):317-25.

Ding X, Huang Y, Tian X, Zhao Y, Feng G, Gao Z. Diagnosis, Treatment, and Management of Otitis Media with Artificial Intelligence. Diagnostics (Basel). 2023;13(13).

Dipaola F, Gebska MA, Gatti M, Levra AG, Parker WH, Menè R, et al. Will Artificial Intelligence Be "Better" Than Humans in the Management of Syncope? JACC Adv. 2024;3(9):101072.

Du Y, Yang P, Liu Y, Deng C, Li X. Artificial intelligence in chronic disease self-management: current applications and future directions. Front Public Health. 2025;13:1689911.

Duan CL, An L, Yang YF, Yuan L, Zhu Y, Han Q, et al. The Role of Artificial Intelligence and Radiomics in the Management of Lymphomas by PET/CT: The Clairvoyance in Clinic. Cancer Manag Res. 2025;17:1457-75.

Dumoulin FL, Rodriguez-Monaco FD, Ebigbo A, Steinbrück I. Artificial Intelligence in the Management of Barrett's Esophagus and Early Esophageal Adenocarcinoma. Cancers (Basel). 2022;14(8).

Eggerth A, Hayn D, Schreier G. Medication management needs information and communications technology-based approaches, including telehealth and artificial intelligence. Br J Clin Pharmacol. 2020;86(10):2000-7.

El Alaoui Y, Elomri A, Qaraqe M, Padmanabhan R, Yasin Taha R, El Omri H, et al. A Review of Artificial Intelligence Applications in Hematology Management: Current Practices and Future Prospects. J Med Internet Res. 2022;24(7):e36490.

Elalouf A, Elalouf H, Rosenfeld A, Maoz H. Artificial intelligence in drug resistance management. 3 Biotech. 2025;15(5):126.

Familiari F, Galasso O, Massazza F, Mercurio M, Fox H, Srikumaran U, et al. Artificial Intelligence in the Management of Rotator Cuff Tears. Int J Environ Res Public Health. 2022;19(24).

Fang B, Yu J, Chen Z, Osman AI, Farghali M, Ihara I, et al. Artificial intelligence for waste management in smart cities: a review. Environ Chem Lett. 2023:1-31.

Farabi Maleki S, Yousefi M, Afshar S, Pedrammehr S, Lim CP, Jafarizadeh A, et al. Artificial Intelligence for Multiple Sclerosis Management Using Retinal Images: Pearl, Peaks, and Pitfalls. Semin Ophthalmol. 2024;39(4):271-88.

Feng K, Yi Z, Xu B. Artificial Intelligence and Breast Cancer Management: From Data to the Clinic. Cancer Innov. 2025;4(2):e159.

Ferrara M, Bertozzi G, Di Fazio N, Aquila I, Di Fazio A, Maiese A, et al. Risk Management and Patient Safety in the Artificial Intelligence Era: A Systematic Review. Healthcare (Basel). 2024;12(5).

Fonseka TM, Bhat V, Kennedy SH. The utility of artificial intelligence in suicide risk prediction and the management of suicidal behaviors. Aust N Z J Psychiatry. 2019;53(10):954-64.

Frederickson KL, Gui H, Barbieri JS, Daneshjou R. Artificial Intelligence Use in Acne Diagnosis and Management-A Scoping Review. Int J Dermatol. 2025.

Gairola S, Solanki SL, Patkar S, Goel M. Artificial Intelligence in Perioperative Planning and Management of Liver Resection. Indian J Surg Oncol. 2024;15(Suppl 2):186-95.

Gandhi H, Kumar K. Artificial Intelligence for the Management of Breast Cancer: An Overview. Curr Drug Discov Technol. 2024;21(4):e031123223115.

Gatineau G, Shevroja E, Vendrami C, Gonzalez-Rodriguez E, Leslie WD, Lamy O, et al. Development and reporting of artificial intelligence in osteoporosis management. J Bone Miner Res. 2024;39(11):1553-73.

Giordano L, Pagana AG, Minciullo PL, Fazio M, Stagno F, Gangemi S, et al. Artificial Intelligence in the Management of Hereditary and Acquired Hemophilia: From Genomics to Treatment Optimization. Int J Mol Sci. 2025;26(13).

Goh JHL, Lim ZW, Fang X, Anees A, Nusinovici S, Rim TH, et al. Artificial Intelligence for Cataract Detection and Management. Asia Pac J Ophthalmol (Phila). 2020;9(2):88-95.

Gonzalez-Garcia A, Pérez-González S, Benavides C, Pinto-Carral A, Quiroga-Sánchez E, Marqués-Sánchez P. Impact of Artificial Intelligence-Based Technology on Nurse Management: A Systematic Review. J Nurs Manag. 2024;2024:3537964.

Goodman D, Zhu AY. Utility of artificial intelligence in the diagnosis and management of keratoconus: a systematic review. Front Ophthalmol (Lausanne). 2024;4:1380701.

Gorincour G, Monneuse O, Ben Cheikh A, Avondo J, Chaillot PF, Journe C, et al. Management of abdominal emergencies in adults using telemedicine and artificial intelligence. J Visc Surg. 2021;158(3s):S26-s31.

Gorris M, Hoogenboom SA, Wallace MB, van Hooft JE. Artificial intelligence for the management of pancreatic diseases. Dig Endosc. 2021;33(2):231-41.

Gou C, Zafar S, Hasnain Z, Aslam N, Iqbal N, Abbas S, et al. Machine and Deep Learning: Artificial Intelligence Application in Biotic and Abiotic Stress Management in Plants. Front Biosci (Landmark Ed). 2024;29(1):20.

Granata V, Fusco R, De Muzio F, Cutolo C, Grassi F, Brunese MC, et al. Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence. Biology (Basel). 2023;12(2).

Granata V, Fusco R, Setola SV, Galdiero R, Maggialetti N, Silvestro L, et al. Risk Assessment and Pancreatic Cancer: Diagnostic Management and Artificial Intelligence. Cancers (Basel). 2023;15(2).

Gruson D, Dabla P, Stankovic S, Homsak E, Gouget B, Bernardini S, et al. Artificial intelligence and thyroid disease management: considerations for thyroid function tests. Biochem Med (Zagreb). 2022;32(2):020601.

Guan S, Liu D, Zhang Q. [Pediatric oral maxillofacial management and artificial intelligence]. Lin Chuang Er Bi Yan Hou Tou Jing Wai Ke Za Zhi. 2023;37(8):658-61.

Guan Z, Li H, Liu R, Cai C, Liu Y, Li J, et al. Artificial intelligence in diabetes management: Advancements, opportunities, and challenges. Cell Rep Med. 2023;4(10):101213.

Guerrisi A, Falcone I, Valenti F, Rao M, Gallo E, Ungania S, et al. Artificial Intelligence and Advanced Melanoma: Treatment Management Implications. Cells. 2022;11(24).

Gunasekeran DV, Ting DSW, Tan GSW, Wong TY. Artificial intelligence for diabetic retinopathy screening, prediction and management. Curr Opin Ophthalmol. 2020;31(5):357-65.

Guo W, Lv C, Guo M, Zhao Q, Yin X, Zhang L. Innovative applications of artificial intelligence in zoonotic disease management. Sci One Health. 2023;2:100045.

Gupta NS, Kumar P. Perspective of artificial intelligence in healthcare data management: A journey towards precision medicine. Comput Biol Med. 2023;162:107051.

Gutierrez L, Lim JS, Foo LL, Ng WY, Yip M, Lim GYS, et al. Application of artificial intelligence in cataract management: current and future directions. Eye Vis (Lond). 2022;9(1):3.

Hameed BMZ, AVL SD, Raza SZ, Karimi H, Khanuja HS, Shetty DK, et al. Artificial Intelligence and Its Impact on Urological Diseases and Management: A Comprehensive Review of the Literature. J Clin Med. 2021;10(9).

Haverkamp W, Strodthoff N. [Artificial intelligence-enhanced electrocardiography : Will it revolutionize diagnosis and management of our patients?]. Herzschrittmacherther Elektrophysiol. 2024;35(2):104-10.

Hegazi M, Taverna G, Grizzi F. Is Artificial Intelligence the Key to Revolutionizing Benign Prostatic Hyperplasia Diagnosis and Management? Arch Esp Urol. 2023;76(9):643-56.

Hu Q, Li K, Yang C, Wang Y, Huang R, Gu M, et al. The role of artificial intelligence based on PET/CT radiomics in NSCLC: Disease management, opportunities, and challenges. Front Oncol. 2023;13:1133164.

Huang L, Huhulea EN, Abraham E, Bienenstock R, Aifuwa E, Hirani R, et al. The Role of Artificial Intelligence in Obesity Risk Prediction and Management: Approaches, Insights, and Recommendations. Medicina (Kaunas). 2025;61(2).

Isaksen JL, Baumert M, Hermans ANL, Maleckar M, Linz D. Artificial intelligence for the detection, prediction, and management of atrial fibrillation. Herzschrittmacherther Elektrophysiol. 2022;33(1):34-41.

Issa IA, Youssef O, Issa T. Can artificial intelligence improve the diagnosis and management of patients with eosinophilic esophagitis? World J Gastroenterol. 2025;31(38):110999.

Ittoop SM, Jaccard N, Lanouette G, Kahook MY. The Role of Artificial Intelligence in the Diagnosis and Management of Glaucoma. J Glaucoma. 2022;31(3):137-46.

Ivanova S, Kuznetsov A, Zverev R, Rada A. Artificial Intelligence Methods for the Construction and Management of Buildings. Sensors (Basel). 2023;23(21).

Jacob M, Reddy RP, Garcia RI, Reddy AP, Khemka S, Roghani AK, et al. Harnessing Artificial Intelligence for the Detection and Management of Colorectal Cancer Treatment. Cancer Prev Res (Phila). 2024;17(11):499-515.

Jin K, Grzybowski A. Advancements in artificial intelligence for the diagnosis and management of anterior segment diseases. Curr Opin Ophthalmol. 2025;36(4):335-42.

Katebi M, Bahreini M, Bagherzadeh R, Pouladi S. Artificial Intelligence and Nursing Management: Opportunities, Challenges, and Ethical Considerations-A Scoping Review. J Nurs Manag. 2025;2025:2797535.

Kaur I, Behl T, Aleya L, Rahman H, Kumar A, Arora S, et al. Artificial intelligence as a fundamental tool in management of infectious diseases and its current implementation in COVID-19 pandemic. Environ Sci Pollut Res Int. 2021;28(30):40515-32.

Kaushik AK, Dhau JS, Gohel H, Mishra YK, Kateb B, Kim NY, et al. Electrochemical SARS-CoV-2 Sensing at Point-of-Care and Artificial Intelligence for Intelligent COVID-19 Management. ACS Appl Bio Mater. 2020;3(11):7306-25.

Khalafi P, Morsali S, Hamidi S, Ashayeri H, Sobhi N, Pedrammehr S, et al. Artificial intelligence in stroke risk assessment and management via retinal imaging. Front Comput Neurosci. 2025;19:1490603.

Khan MJ, Karmakar A. Emerging Robotic Innovations and Artificial Intelligence in Endotracheal Intubation and Airway Management: Current State of the Art. Cureus. 2023;15(7):e42625.

Kim EN, Gowin K, Reb A, Sandhu D, Veguilla E, Zachariah F, et al. Artificial Intelligence in Supportive Oncology and Symptom Management Opportunities. Cancer J. 2025;31(6).

Kiwanuka F, Stevanin S, Ahtisham Y, Owusu B, Nurmeksela A, Kvist T. Nurse Leadership and Artificial Intelligence Integration in Nursing Workforce Management: A Scoping Review. J Adv Nurs. 2025.

Kumar V, Gaddam M, Moustafa A, Iqbal R, Gala D, Shah M, et al. The Utility of Artificial Intelligence in the Diagnosis and Management of Pancreatic Cancer. Cureus. 2023;15(11):e49560.

Lan L, Sun W, Xu D, Yu M, Xiao F, Hu H, et al. Artificial intelligence-based approaches for COVID-19 patient management. Intell Med. 2021;1(1):10-5.

Levy-Mendelovich S, Glicksberg BS, Soffer S, Gendler M, Efros O, Klang E. Artificial Intelligence in Hemophilia Management: Revolutionizing Patient Care and Future Directions. Acta Haematol. 2025;148(5):546-55.

Li J, Huang J, Zheng L, Li X. Application of Artificial Intelligence in Diabetes Education and Management: Present Status and Promising Prospect. Front Public Health. 2020;8:173.

Li S, Yue R, Lu S, Luo J, Wu X, Zhang Z, et al. Artificial intelligence and machine learning in acute respiratory distress syndrome management: recent advances. Front Med (Lausanne). 2025;12:1597556.

Lim K, Heo TY, Yun J. Trends in the Approval and Quality Management of Artificial Intelligence Medical Devices in the Republic of Korea. Diagnostics (Basel). 2022;12(2).

Liu J, Liu Z, Liu C, Sun H, Li X, Yang Y. Integrating Artificial Intelligence in the Diagnosis and Management of Metabolic Syndrome: A Comprehensive Review. Diabetes Metab Res Rev. 2025;41(4):e70039.

Lococo F, Ghaly G, Flamini S, Campanella A, Chiappetta M, Bria E, et al. Artificial intelligence applications in personalizing lung cancer management: state of the art and future perspectives. J Thorac Dis. 2024;16(10):7096-110.

Lu MY, Chuang WL, Yu ML. The role of artificial intelligence in the management of liver diseases. Kaohsiung J Med Sci. 2024;40(11):962-71.

Luo J, Pan M, Mo K, Mao Y, Zou D. Emerging role of artificial intelligence in diagnosis, classification and clinical management of glioma. Semin Cancer Biol. 2023;91:110-23.

Mahdavi S, Anthony NM, Sikaneta T, Tam PY. Perspective: Multiomics and Artificial Intelligence for Personalized Nutritional Management of Diabetes in Patients Undergoing Peritoneal Dialysis. Adv Nutr. 2025;16(3):100378.

Maroju RG, Choudhari SG, Shaikh MK, Borkar SK, Mendhe H. Application of Artificial Intelligence in the Management of Drinking Water: A Narrative Review. Cureus. 2023;15(11):e49344.

Mateus N, Abade E, Coutinho D, Gómez M, Peñas CL, Sampaio J. Empowering the Sports Scientist with Artificial Intelligence in Training, Performance, and Health Management. Sensors (Basel). 2024;25(1).

Maurya R, Chug I, Vudatha V, Palma AM. Applications of spatial transcriptomics and artificial intelligence to develop integrated management of pancreatic cancer. Adv Cancer Res. 2024;163:107-36.

Mayro EL, Wang M, Elze T, Pasquale LR. The impact of artificial intelligence in the diagnosis and management of glaucoma. Eye (Lond). 2020;34(1):1-11.

Medeiros HJS, Dabbagh A, Vlassakov K, Sabouri AS. Artificial Intelligence in Regional Anesthesia and Pain Management. Anesthesiol Clin. 2025;43(3):491-505.

Meier JM, Tschoellitsch T. Artificial Intelligence and Machine Learning in Patient Blood Management: A Scoping Review. Anesth Analg. 2022;135(3):524-31.

Mercurio M, Denami F, Vescio A, Familiari F, Longo UG, Galasso O, et al. Artificial Intelligence for the Diagnosis and Management of Patellofemoral Instability: A Comprehensive Review. Diagnostics (Basel). 2025;15(22).

Mina A. Big data and artificial intelligence in future patient management. How is it all started? Where are we at now? Quo tendimus? Adv Lab Med. 2020;1(3):20200014.

Młynarska E, Bojdo K, Frankenstein H, Kustosik N, Mstowska W, Przybylak A, et al. Nanotechnology and Artificial Intelligence in Dyslipidemia Management-Cardiovascular Disease: Advances, Challenges, and Future Perspectives. J Clin Med. 2025;14(3).

Muzammil MA, Javid S, Afridi AK, Siddineni R, Shahabi M, Haseeb M, et al. Artificial intelligence-enhanced electrocardiography for accurate diagnosis and management of cardiovascular diseases. J Electrocardiol. 2024;83:30-40.

Nagarajan VD, Lee SL, Robertus JL, Nienaber CA, Trayanova NA, Ernst S. Artificial intelligence in the diagnosis and management of arrhythmias. Eur Heart J. 2021;42(38):3904-16.

Naik N, Roth B, Lundy SD. Artificial Intelligence for Clinical Management of Male Infertility, a Scoping Review. Curr Urol Rep. 2024;26(1):17.

Naser AM, Vyas R, Morgan AA, Kalaiger AM, Kharawala A, Nagraj S, et al. Role of Artificial Intelligence in the Diagnosis and Management of Pulmonary Embolism: A Comprehensive Review. Diagnostics (Basel). 2025;15(7).

Natekar A, Cohen F. Artificial Intelligence and Predictive Modeling in the Management and Treatment of Episodic Migraine. Curr Pain Headache Rep. 2025;29(1):56.

Nguyen T, Ong J, Jonnakuti V, Masalkhi M, Waisberg E, Aman S, et al. Artificial intelligence in the diagnosis and management of refractive errors. Eur J Ophthalmol. 2025;35(4):1456-80.

Nishida N, Kudo M. Artificial Intelligence in Medical Imaging and Its Application in Sonography for the Management of Liver Tumor. Front Oncol. 2020;10:594580.

Tahavvori A, Chelan RJ, Aminoleslami S, Moghadam OF, Haghighi L, Abdian Y, et al. Large Language Models and ChatGPT in Medical Sciences: Foundations, Capabilities, and Challenges. Kindle. 2025;5(1):1-222.

Ramezanian M, Benis DS, Nikakhtar R, Gorjizadeh N, Asadi F, Bagherianlemraski M, et al. Artificial Intelligence in Genomic Medicine: Improving Diagnostic Accuracy and Treatment Outcomes. Kindle. 2025;5(1):1-215.

Rahmani E, Farrokhi M, Aghajan A, Gholampour G, Ghoodjani E, Shemshadigolafzani R, et al. AI-Driven Strategies for Improving Patient Quality of Life. Kindle. 2025;5(1):1-214.

Rahaeimehr R, Babakhani Z, Moghadam OF, Nasir SM, Safaei P, Abdollahi MAA, et al. Application of AI in Research and Data Science. Kindle. 2025;5(1):1-362.

Niakosari V, Mosaddeghi-Heris R, Hezarani HB, Farrokhi M, Safaei P, Nikseresht H, et al. AI in Medical Imaging and Early Disease Detection. Kindle. 2025;5(1):1-203.

Louia S, Mosaddeghi-Heris R, Kamvar R, Zahmatkesh N, Damiri M, Esfahani MA, et al. Artificial Intelligence in Cancer Genomics: Transforming Diagnosis, Treatment, and Precision Medicine. Kindle. 2025;5(1):1-234.

Louia S, Moghadam OF, Chelan RJ, Taheri N, Amini F, Ahmadi S, et al. Role of Immunogenetics in the Etiology, Diagnosis, and Treatment of Diseases. Kindle. 2025;5(1):1-222.

Javadzadeh A, Shafiei D, Amlash RS, Mehrvar R, Sepehrian S, Shafiee A, et al. The Brain-Body Connection: Neuroscience’s Role Across Medical Sciences Disciplines. Kindle. 2025;5(1):1-210.

Hedayati F, Chelan RJ, Alijaniha M, Koma KK, Irajian P, Rajabi N, et al. Explainable Artificial Intelligence for Reducing the Global Cancer Burden. Kindle. 2025;5(1):1-195.

Harati K, Tahernejad M, Saddam SMS, Farshi M, Saeedfar M, Gheibi M, et al. The Future of Prosthetics and Organ Transplantation: A Therapeutic Approach Across Various Medical Disciplines. Kindle. 2025;5(1):1-193.

Harati K, Mosaddeghi-Heris R, Kiani K, Saligheh Rad M, Morovatshoar R, Kamali M, et al. The AI Revolution: Predicting and Managing the Next Global Health Challenges and Emerging Disease Outbreaks. Kindle. 2025;5(1):1-326.

Harati K, Abbasmofrad H, Ebrahimi M, Hashemlu L, Chelan RJ, Hashemzadeh A, et al. Intelligent Patient Engagement: Education and Follow-Up through AI and Telemedicine. Kindle. 2025;5(1):1-185.

Gheibi M, Rajabloo Y, Alipour-Khabir Y, Azami P, Louia S, Bojnordi TE, et al. Artificial Intelligence in Biomarker Discovery: Applications Across Medical Specialties. Kindle. 2025;5(1):1-209.

Farrokhi M, Taheri N, Moghadam OF, Armoon M, Samimi S, Torkashvand N, et al. Artificial Intelligence for Hard-to-Treat and Unknown-Origin Cancers. Kindle. 2025;5(1):1-296.

Farrokhi M, Ghalamkarpour N, Nouri S, Babaei M, Rajabloo Y, Sattari M, et al. Innovative Vaccination: A New Era in Cancer Prevention. Kindle. 2025;5(1):1-194.

Babaheidarian P, Soltanattar A, Sajadi SK, Rostamian L, Foroutani L, Soleymanpourshamsi T, et al. Robotics in Healthcare. Kindle. 2025;5(1):1-178.

Rahmani E, Bayat Z, Farrokhi M, Karimian S, Zahedpasha R, Sabzehie H, et al. Monkeypox: a comprehensive review of virology, epidemiology, transmission, diagnosis, prevention, treatment, and artificial intelligence applications. Archives of Academic Emergency Medicine. 2024;12(1):e70.

Farrokhi M, Moeini A, Taheri F, Farrokhi M, Khodashenas M, Babaei M, et al. AI-assisted Screening and Prevention Programs for Diseases. Kindle. 2023;3(1):1-209.

Shayganfar A, Farrokhi M, Shayganfar S, Ebrahimian S. Associations between bone mineral density, trabecular bone score, and body mass index in postmenopausal females. Osteoporosis and sarcopenia. 2020;6(3):111-4.

Farrokhi M, Yarmohammadi B, Mangouri A, Hekmatnia Y, Bahramvand Y, Kiani M, et al. Screening performance characteristics of ultrasonography in confirmation of endotracheal intubation; a systematic review and meta-analysis. Archives of Academic Emergency Medicine. 2021;9(1):e68.

Farrokhi M, Khurshid M, Mohammadi S, Yarmohammadi B, Bahramvand Y, Nasrollahi E, et al. Comparison of ultrasound-accelerated versus conventional catheter-directed thrombolysis for deep vein thrombosis: A systematic review and meta-analysis. Vascular. 2022;30(2):365-74.

Mirahmadi A, Hosseini-Monfared P, Amiri S, Taheri F, Farokhi M, Minaei Noshahr R, et al. Cross‑cultural adaptation and validation of the Persian version of the new Knee Society Knee Scoring System (KSS). Journal of Orthopaedic Surgery and Research. 2023;18(1):858.

Kazemi S-M, Khorram R, Fayyazishishavan E, Amani-Beni R, Haririan Y, Khameneh SMH, et al. Diagnostic Accuracy of Ottawa Knee Rule for Diagnosis of Fracture in Patients with Knee Trauma; a Systematic Review and Meta-analysis. Archives of Academic Emergency Medicine. 2023;11(1):e30.

Goodarzy B, Rahmani E, Farrokhi M, Tavakoli R, Fard AM, Ghaleh MR, et al. Diagnostic value of chest computed tomography scan for identification of foreign body aspiration in children: a systematic review and meta-analysis. Archives of Academic Emergency Medicine. 2024;13(1):e3.

Moteshakereh SM, Zarei H, Nosratpour M, Moshfegh MZ, Shirvani P, Mirahmadi A, et al. Evaluating the diagnostic performance of MRI for identification of meniscal ramp lesions in ACL-deficient knees: a systematic review and meta-analysis. JBJS. 2024;106(12):1117-27.

Farrokhi M, Manavi SP, Taheri F. Non-invasive monitoring of pH and oxygen using miniaturized electrochemical sensors. Journal of translational medicine. 2021;19(1):252.

Rahmani E, Fayyazishishavan E, Afzalian A, Varshochi S, Amani-Beni R, Ahadiat S-A, et al. Point-of-care ultrasonography for identification of skin and soft tissue abscess in adult and pediatric patients; a systematic review and meta-analysis. Archives of Academic Emergency Medicine. 2023;11(1):e49.

Clinical Decision-Making Using Artificial Intelligence

Downloads

Published

2025-12-19

How to Cite

Farrokhi, M., Mehrtabar, S., Harati, K., Pourlak, T., Ghadirzadeh, E., Abbasmofrad, H., Zahedpasha, R., Bashghareh, P., Bahmanipour, K., Hemmati, M., Amin Afshari, S., Lashgari, M., Kavian, M., Tajik, Z., Mohammadi, A., Karimi Kenari, M. M., Askari, H., Amiri, A., Rahimi, A., Ketabi, S., Komaee Koma, K., Nouri, K., Mehrvar, R., Hosseini, N., Atighi, J., Haghani, M., Naseh, Z., Akhlaghitehrani, S., Kourehpaz Hassanalizad, Z., Roohinezhad, R., Hashemi Ali Abadi, S., Zakavi, S. A., Javadian, M., Daliri Ojghaz, M. A., Alinezhad Taheri, M., Hamzehnejadi, Z., Cribello, E., Tabatabaei, S. M., Seifi, M., Taheri, N., Fakharzadeh Moghadam, O., Amiri Marbini, S., Abdollahpour, S., & Sanjabiyan, K. (2025). Clinical Decision-Making Using Artificial Intelligence. Kindle, 5(1), 1–236. Retrieved from https://preferpub.org/index.php/kindle/article/view/Book64

Issue

Section

Scholarly Peer-reviewed Books

Categories